

Journal of Organometallic Chemistry 557 (1998) 187-205

Tin(IV) and organotin(IV) derivatives of novel β -diketones. III¹ Diorgano- and dihalotin(IV) complexes of 1,3-dimethyl-4-R(C=O)-pyrazol-5-one ($R = CH_3$, C_6H_5) and the crystal structure of trans-dicyclohexylbis(1,3-dimethyl-4-acetylpyrazolon-5-ato)tin(IV)

C. Pettinari^{a,*}, F. Marchetti^a, A. Cingolani^a, D. Leonesi^a, E. Mundorff^b, M. Rossi^b, F. Caruso^c

^a Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, 62032 Camerino, Macerata, Italy ^b Vassar College, Department of Chemistry, Poughkeepsie, NY 12604-0484, USA ^c Istituto di Strutturistica Chimica 'G. Giacomello', CNR, CP 10, 00016, Monterotondo Stazione, Roma, Italy

Received 18 July 1997; received in revised form 6 October 1997

Abstract

Several diorgano- and dihalotin(IV) derivatives of new β -diketonate donors, 1,3-dimethyl-4-R(C=O)pyrazol-5-ones (R = Me, $Q_{\rm D}H$; R = Ph, $Q_{\rm M}H$) have been synthesized and characterized with analytical and spectroscopic methods. They are stable monomeric species, very soluble not only in aromatic and chlorohydrocarbon solvents, but also in alcohols and hydroalcoholic solutions. In the solid state, the diorganotin(IV) derivatives adopt a skewed trapezoidal bipyramidal geometry. The X-ray structure of bis(1,3-dimethyl-4-acetylpyrazolon-5-ato)dicyclohexyltin(IV) shows marked distortion of the organometallic C-Sn-C angle (155°) and two different sets of Sn-O distances. The factors affecting the distortion of this type of complex are discussed. The dihalotin(IV) derivatives (Q)₂SnX₂ (X = F, Cl, Br and I) are likely *cis* octahedral in the solid state, whereas in solution they exist as a mixture of cis and trans isomers. ¹¹⁹Sn-NMR solution data are discussed and related to electronic and steric properties of the β -diketonate donor, and also to the nature of the halo and organic groups bound to tin. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Tin(IV) complexes; 4-Acyl-5-pyrazolones; Crystal structure; IR; NMR

1. Introduction

A few years ago we initiated the investigation on the interaction between organotin(IV) acceptors and a class of β -diketonate ligands [1], 4-acyl-5-pyrazolones (QH), which possess the chelating moiety fused with a pyrazole ring (Fig. 1).

These molecules are currently used as metal extractants [2] and dyes [3], and they have recently shown interesting coordination behavior with several metal ions [4].

With several of these asymmetric donors we have obtained $(Q)_2 SnR_2$ derivatives having structural and chemical properties clearly different from the analogous acetylacetonato-tin(IV) complexes [5]. Several of these complexes show X-ray crystal structures with strongly distorted octahedral geometries around tin and two different sets of Sn-O distances and a C-Sn-C angle smaller than 180° [6]. Also these structures always show a short $C-H \cdots O$ contact between the carbonyl (5) position) oxygen of the pyrazole ring and the ortho C-H in the R^1 phenyl (Fig. 2).

^{*} Corresponding author.

¹ Part II is ref. ([6]e)

As predicted by Kepert in his theoretical model [7], an increase in octahedral distortion is accompained by a reduction of the ligand bite angle O_s-Sn-O_p (where O_s/O_p stands for oxygen atoms associated to secondary/ primary Sn–O bonds). This feature can be ascribed to two factors: the type of organic groups bonded to tin and the type of substituents R¹, R² and R³ in the ligand. So far we have investigated the modification in the 4-acyl moiety (R³), because of easier synthetic routes and, in fact, the literature reports only ligands having different R³ groups, with R¹ = Ph and R² = Me [8].

In this report we describe the synthesis of two novel ligands, Q_DH ($R^1 = R^2 = R^3 = Me$) and Q_MH ($R^1 = R^2 = Me$ and $R^3 = Ph$) (see Fig. 1). For $R^1 = Me$ the previously mentioned C-H···O contact is eliminated and so one factor that can potentially contribute to the octahedral distortion is avoided.

The ligand Q_DH can be regarded as the simplest in the family of 4-acyl-5-pyrazolones and the most similar to acetylacetone or 2,4-pentanedione (acacH). It is interesting to note that acacH (the first ligand to be used as a complexing agent) is the prototype of β -diketonate donors, whereas Q_DH has now been synthesized by us, about 30 years after 1-phenyl-3-methyl-4-benzoyl-5pyrazolone (Q'H) (Fig. 1), which can be regarded as the prototype of acylpyrazolones [9].

The ligand $Q_M H$ is a structural isomer of the previously employed 1-phenyl-3-methyl-4-acetyl-5-pyrazolone (Q"H) (Fig. 1) ([1,6]c) from which it differs only by the inversion of one Me with a Ph group in R¹ and R³ positions.

These donors are markedly different with respect to the previously employed 4-acyl-5-pyrazolones. They show good solubility not only in several organic solvents, as did previous ligands, but also in alcohols and water: a very important property in view of the possible biological applications of their $R_2Sn(IV)$ and $X_2Sn(IV)$ derivatives. In fact, several related tin(IV) compounds are known to possess in vitro antitumoral activity, comparable to that of Cisplatin [10]. It is believed that the ligand behaves as a carrier of the R_2Sn^{2+} moiety through cell membranes to allow interaction with the target cell. The mechanism by which these compounds

Fig. 1. 4-Acyl-5-pyrazolone proligands.

Fig. 2. The intramolecular $O \cdot \cdot \cdot H$ interaction.

exert their antitumor action is not known. Two factors concur to make their formulation as drugs difficult: the high cytotoxicity and insolubility in physiological media [11].

The synthesis of several $(Q)_2 SnR_2$ derivatives (R = Me, Et, Buⁿ, Bu^t, Cy, Bz, Ph, F, Cl, Br and I), together with a study of their analytical, spectroscopic and structural features in the solid state and in solution are reported. The X-ray crystal structure of a dicyclohexyl-tin(IV) derivative provides additional information about the particular mode of action of these donors.

We also report here the synthesis and characterization of novel dihalotin(IV) derivatives $(Q)_2 \text{SnX}_2$ (Q = Q' and Q"; X = F, Cl, Br and I).

2. Results and discussion

Derivatives 1, 3-8, 10-15, 17, 20 and 25 have been synthesized as reported in Eq. (1):

 $2QH + 2KOH + R_n SnX_{4-n} \xrightarrow{MeOH} (Q)_2 R_n SnX_{2-n} + 2KX$ $+ 2H_2O(QH = Q_M H, Q_D H, Q'' H; R$

= Me, Et, Bu^t, Cy, Bz, Ph, Cl, Br; n = 0, 1, 2) (1)

Derivatives **2** and **9** have been obtained in the following way:

$$2QH + Bu_{2}^{n}SnO^{\text{Benzene, }\Delta}(Q)_{2}SnBu_{2}^{n} + H_{2}O$$

$$\times (QH = Q_{M}H, Q_{D}H)$$
(2)

Derivatives 16, 19, 22 and 24 have been obtained in the following way:

$$2QH + SnF_4 \xrightarrow{CHCI_3, \Delta} (Q)_2 SnF_2 + 2HF$$
$$\times (QH = Q_M H, Q_D H, Q'' H, Q' H)$$
(3)

Derivatives 18, 21, 23 and 26 have been obtained by halogen exchange of the corresponding dichlorotin(IV) complexes treated with a large excess of sodium iodide:

$$(Q)_{2}SnCl_{2} + 2NaI^{1HF, \Delta}(Q)_{2}SnI_{2} + 2NaCl$$

$$\times (QH = Q_{M}H, Q_{D}H, Q''H, Q'H)$$
(4)

Dibromo and diiodotin(IV) derivatives $(Q)_2 SnX_2$ (X = Br or I) can be obtained also by oxidative addition of X_2 to $(Q)_2 Sn(II)$ [12]:

$$(Q)_{2}Sn(II) + X_{2} \xrightarrow{CH_{2}CI_{2}, hv/\Delta} (Q)_{2}SnX_{2}$$
(5)

Analytical data are reported in Table 1.

Because $(Q_M)^-$ and $(Q_D)^-$ derivatives have high or medium solubility in most common solvents, it is more difficult to isolate and purify their complexes with respect to previously synthesized $(Q)_2 \text{SnR}_2$ which have more hindered $(Q)^-$ donors. In fact, this type of compound is generally insoluble in polar protic solvents and precipitates from the alcoholic reaction solution, whereas compounds **1–20** show high solubility in alcohol and also in hydroalcoholic solutions. The latter are colloidal type solutions.

This particular physical property can be attributed to the ligands $(Q_M)^-$ and $(Q_D)^-$. In fact, the proligands Q_MH and Q_DH possess good solubility in water, probably due to H-interactions among H₂O molecules and the carbonylic O atoms and/or the N(2) atom (see later Fig. 8). This interaction seems not possible when the N(1) environment involves hindered or lipophilic groups such as a phenyl and so the solubility in protic solvents decreases.

2.1. Conductivity and molecular weight data

Derivatives 1-26 are non-electrolytes in dichloromethane. Moreover, the osmometric molecular weight determinations (Table 1), carried out in chloroform for several compounds, indicate a stable covalent mononuclear species in solution, thus excluding any dissociative equilibrium.

2.2. Infrared data

IR and far-IR data reported in Table 2 provide information about the nature of the donor-acceptor interaction. Assignments have been made on the basis of the literature available for dihalotin(IV) and diorganobis(β -diketonate)tin(IV) derivatives.

Comparing the spectra of the neutral proligands QH and those of compounds 1-26 the disappearance of the broad band between 3200 and 2700 cm⁻¹ can be noted. This is due to the loss of the enolic proton upon complexation and so, an absence of the O-H···O intramolecular interaction.

It is known that β -diketones generally exist as a mixture of diketonic and keto-enolic tautomers. The neutral Q_DH ligand shows the first carbonyl band at 1680 cm⁻¹, whereas for Q_MH the value is 1630 cm⁻¹,

therefore there is more diketonic form in Q_DH than in Q_MH .

The shift towards lower frequencies of the v(C=O) indicates strong coordination of the ligand in the monoanionic form through both the carbonylic oxygens. In the region 470–390 cm⁻¹ we have observed two or more strong absorptions, which have been assigned to v(Sn-O) stretching [13]. The appearance of several Sn-O bands is likely due to the presence of different Sn-O bond distances (see diffraction study below). These absorptions also appear at higher frequencies (about 10–20 cm⁻¹) with respect to those of the previously synthesized (Q)₂SnR₂ compounds [1,6], thus indicating a stronger donor–acceptor interaction.

In the region below 650 cm⁻¹ we assign other bands to v(Sn-C) stretching modes [14]. In the case of Me, Et, Buⁿ, Bz and Ph groups bonded to tin, welldistinguished strong or medium absorptions are found, but in the case of derivatives containing Cy and Bu^r groups the assignements are not certain, due to the presence of Sn-O and donor bands in the same area.

The absorptions due to Sn-X (X = F, Cl, Br, I) are observed at very different frequencies (Fig. 3).

In the spectra of 16, 19, 22 and 24, the v(Sn-F) are found at 580-560 cm⁻¹ as one or two medium absorptions ([14]b). For the *cis* isomer, both symmetric and asymmetric Sn-F stretching modes are IR active. Also in the spectra of 15, and of the other (Q)₂SnCl₂ derivatives (where $Q = Q_M$, Q' and Q") [1,6] the v(Sn-Cl) fall at 350-330 cm⁻¹ as two broad and intense peaks, indicating the presence of *cis* isomers in the solid state. Whereas in the spectra of 17, 20, 25 and $(Q')_2 SnBr_2$ [12], the v(Sn-Br) fall at 250-200 cm⁻¹ and, in these cases, there are two or more strong bands. Finally, also diiodotin(IV) derivatives 18, 21, 23 and 26 show two or more strong absorbances due to v(Sn-I) at about 200–220 cm⁻¹. Therefore, for dibromo- and diiodotin(IV) compounds we cannot exclude the presence of both *cis* and *trans* isomers in the solid state.

In addition, the v(Sn-O) also are influenced by the type of halogens bonded to tin. In fact, these occur at higher frequencies in the presence of fluorine atoms, whereas they occur at lower frequencies in diiodotin(IV) derivatives. The ~ 10 cm⁻¹ increase in frequency of these bands on going from (Q)₂SnI₂ to (Q)₂SnF₂ can be interpreted in terms of the inductive effect of the increasing electron withdrawing power of the corresponding halogens, which strengthens the Sn-O bonds. Another explanation could be based on the variation in mass of the SnX₂ group to which the oxygens are linked in the series (Q)₂SnX₂.

This effect provides further support to our assignment of the 450 cm $^{-1}$ bands to Sn–O stretching modes.

Table 1 Analytical data of compounds 1-26

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Compound (empirical formula)	No.	M.p. (°C)	Yield (%)	Element	tal analyses ^a		F.W.	M.W. ^b	Conc. ^c	r ^d
					С	Н	Ν	_			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{(Q_M)_2 SnEt_2}$	1	167-170	58	55.3	5.5	9.3	607	476	1.0×10^{-2}	0.78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{28}H_{32}N_4O_4Sn$				(55.4)	(5.3)	(9.2)		508	2.0×10^{-2}	0.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_M)_2 SnBu_2^n$	2	83-85	85	57.7	6.3	8.4	663	519	1.1×10^{-2}	0.78
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C_{32}H_{40}N_4O_4Sn$				(57.9)	(6.1)	(8.4)		608	2.2×10^{-2}	0.92
$ \begin{array}{c} (\chi_{ad}, g, h) (\chi_{ad}, h) (\chi_{$	$(\mathbf{O}_{\mathbf{v}})$ Sin Dest	2	242 244	71	577	()	0.7		570	0.6×10^{-2}	0.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_M)_2$ ShBu ₂	3	242-244	/1	57.7	0.0	ð.3				
$ \begin{array}{c} (\Delta_{01}, \mathrm{spit}_{3}, \mathrm{C}_{3}, \mathrm{C}_{$	$C_{32}H_{40}N_4O_4Sn$	4	127 140	(((57.9)	(0.1)	(8.4)				
$ \begin{array}{c} c_{a} t_{a} v_{b} Q_{b} Sn t_{a} \\ (Q_{b}) Sn t_{a} \\ (Q_{b}) Sn t_{b} \\ (Q_{b}) $	$(Q_M)_2$ SnCy ₂	4	137-140	00	00.1	0.4	(7.0)				
$ \begin{array}{c} (Q_{01})_{53} \mathrm{Bh2}_{2}, & 5 & \mathbf$	$C_{36}H_{44}N_4O_4Sn$	-	(5 (0	4.4	(60.4)	(6.2)	(7.8)	721	(2)	0.0.10-3	0.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_M)_2 SnBz_2$	5	65-69	44	62.2	4.8	/.5	/31	636	0.9×10^{-3}	0.8/
$ \begin{array}{c} (Q_{01})_{\rm SN} \ln^2_{\rm S}, & (0, 1)_{\rm SN} \ln^2_{\rm SN} (1, 1)_{\rm SN} (1, 1$	$C_{38}H_{36}N_4O_4Sn$	6	104 100	70	(62.4)	(4.9)	(/./)		649	1.8×10^{-2}	0.89
$ \begin{array}{cccc} (1,5) & (4,b) & (8,b) \\ (2p) {\rm SnR}_{2} & 2D-221 & 74 & 42.5 & 5.5 & 12.0 & 455 & 476 & 1.8 \times 10^{-2} & 1.05 \\ (2p) {\rm SnR}_{2} & 8 & 178-181 & 70 & 45.0 & 6.3 & 11.2 \\ (2p) {\rm SnR}_{2} & 9 & 76-77 & 64 & 48.7 & 6.8 & (11.6) \\ (2p) {\rm SnR}_{2} & 9 & 76-77 & 64 & 48.7 & 6.8 & (10.4) \\ (2p) {\rm SnR}_{2} & 10 & 191-192 & 68 & 48.1 & 6.9 & 10.2 & 539 & 556 & 1.0 \times 10^{-2} & 1.03 \\ (2p) {\rm SnR}_{2} & (49.0) & (6.7) & (10.4) \\ (2p) {\rm SnR}_{2} & (49.0) & (6.7) & (10.4) \\ (2p) {\rm SnR}_{2} & (49.0) & (6.7) & (10.4) \\ (2p) {\rm SnR}_{2} & (5.5) & 12 & 0 & 0.2 & 539 & 556 & 1.0 \times 10^{-2} & 0.91 \\ (2p) {\rm SnR}_{2} & (5.5) & (5.3) & (9.2) & 498 & 1.3 \times 10^{-2} & 0.91 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 498 & 1.3 \times 10^{-2} & 0.84 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.84 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.84 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.82 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.82 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.82 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.85 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.85 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.2) & 500 & 0.9 \times 10^{-2} & 0.85 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.3) & (9.4) & (9.6) & 493 & 1.8 \times 10^{-2} & 0.85 \\ (2p) {\rm SnR}_{2} & (5.4) & (5.7) & (3.9) & (1.1) & (5.9) & (5.7) & $	$(Q_M)_2 SnPh_2$	6	104 - 108	/8	62.3	4.5	/.9				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{36}H_{32}N_4O_4Sn$	_			(61.5)	(4.6)	(8.0)		17.6	10 10 2	1.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnMe_2$	7	220-221	/4	42.5	5.5	12.0	455	4/6	1.8×10^{-2}	1.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{16}H_{24}N_4O_4Sn$	0	150 101	-	(42.3)	(5.3)	(12.3)		455	1.0×10^{-2}	1.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnEt_2$	8	178-181	/0	45.0	6.3	11.2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{18}H_{28}N_4O_4Sn$				(44.8)	(5.8)	(11.6)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnBu_2^n$	9	76-77	64	48.7	6.8	10.2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{22}H_{36}N_4O_4Sn$				(49.0)	(6.7)	(10.4)				
	$(Q_D)_2 SnBu_2^r$	10	191–192	68	48.1	6.9	10.2	539	556	1.0×10^{-2}	1.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{22}H_{36}N_4O_4Sn$				(49.0)	(6.7)	(10.4)			2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnCy_2$	11	145 - 147	76	55.6	5.5	9.3	591	537	1.0×10^{-2}	0.91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{26}H_{40}N_4O_4Sn$				(55.4)	(5.3)	(9.2)		498	1.8×10^{-2}	0.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnBz_2$	12	177 - 179	58	55.0	5.5	8.9	607	509	0.9×10^{-2}	0.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{28}H_{32}N_4O_4Sn$				(55.4)	(5.3)	(9.2)		500	0.9×10^{-2}	0.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnPh_2$	13	205 - 208	80	54.1	5.0	9.4	579	556	1.1×10^{-2}	0.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{26}H_{28}N_4O_4Sn$				(53.9)	(4.9)	(9.6)		493	1.8×10^{-2}	0.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2$ SnMeCl	14	209 - 211	54	38.1	4.5	11.5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{15}H_{21}ClN_4O_4Sn$				(37.9)	(4.4)	(11.9)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnCl_2$	15	102 - 105	75	34.1	3.9	11.1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{14}H_{18}Cl_2N_4O_4Sn$				(33.9)	(3.7)	(11.3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnF_2$	16	195 - 200	54	36.6	4.0	12.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{14}H_{18}F_2N_4O_4Sn$				(36.3)	(3.9)	(12.1)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnBr_2$	17	234-239	63	28.5	3.2	9.4				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{14}H_{18}Br_2N_4O_4Sn$				(28.7)	(3.1)	(9.6)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_D)_2 SnI_2$	18	280dec	55	24.5	2.8	8.2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{14}H_{18}I_2N_4O_4Sn$				(24.8)	(2.7)	(8.2)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_M)_2 SnF_2$	19	128 - 131	84	49.3	3.9	9.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24}H_{22}F_2N_4O_4Sn$				(49.1)	(3.8)	(9.5)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_M)_2 SnBr_2$	20	140dec	74	40.5	3.1	8.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24}H_{22}Br_2N_4O_4Sn$				(40.7)	(3.1)	(7.9)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q_M)_2 SnI_2$	21	240dec	68	35.8	2.9	7.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{24}H_{22}I_2N_4O_4Sn$				(35.9)	(2.8)	(7.0)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q')_2 SnF_2$	22	252 - 254	74	57.2	3.8	7.8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{34}H_{26}F_2N_4O_4Sn$				(57.4)	(3.7)	(7.9)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(Q')_2 SnI_2$	23	222 - 225	58	44.1	2.9	6.1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{34}H_{26}I_2N_4O_4Sn$				(44.0)	(2.8)	(6.0)				
$C_{24}H_{22}F_2N_4O_4Sn \qquad (49.1) \qquad (3.8) \qquad (9.5)$	$(Q'')_2 SnF_2$	24	265 - 268	83	49.0	3.9	9.3				
(O') SnPr 75 240 242 75 40 7 2 2 7 8	$C_{24}H_{22}F_2N_4O_4Sn$				(49.1)	(3.8)	(9.5)				
$(Q_{2})_{2}SIIDI_{2}$ 25 240-242 75 40.7 5.2 7.8	$(Q'')_2 SnBr_2$	25	240 - 242	75	40.7	3.2	7.8				
$C_{24}H_{22}Br_2N_4O_4Sn$ (40.7) (3.1) (7.9)	$C_{24}H_{22}Br_2N_4O_4Sn$				(40.7)	(3.1)	(7.9)				
$(Q'')_2 SnI_2$ 26 227–228 42 35.7 2.0 7.0	$(Q'')_2 SnI_2$	26	227 - 228	42	35.7	2.0	7.0				
$C_{24}H_{22}I_2N_4O_4Sn$ (35.9) (2.8) (7.0)	$C_{24}H_{22}I_2N_4O_4Sn$				(35.9)	(2.8)	(7.0)				

^a Values calculated in parentheses.

^b Molecular weight determined osmometrically in chloroform solution at 40°C.

^c Concentrations are in mol per 1000 g of solvent.

^d r = M.W./F.W.

Table 2		
IR data	(nujol mull) of cor	npounds 1-26

No.	Compound	$1700-1500 \text{ cm}^{-1}$	Sn–O	Sn-C	Sn-X ^a	$<650 \text{ cm}^{-1}$
	Q _M H	1632sbr,1620s				615s,580s,553w
		1613sbr,1573s				520m,458w,426s
		1566s,1559s				408m,378s,338m
		1536s,1513m				285s,270m,189s
		1503m				
1	$(Q_M)_2 SnEt_2$	1600s,1593sh	460m	550m		637w,627w,605s
		1574m,1557sh	408s			533s,362m,302m
		1523s,1498s	392s			275w,256w,212m
2	$(\mathbf{Q}_{\mathbf{M}})_{2}\mathbf{SnBu}_{2}^{n}$	1600sh,1592s	461m	535s		647w,630w,605vs
	$(\mathbf{x}_{\mathbf{M}})_{2} = \mathbf{x}_{2}$	1570s.1556sh	404m			580w.368m.302m
		1527m.1497s	390vs			286w.266w.255m
						209s.181s
3	$(O_M)_2 SnBu_2^t$	1598vs.1589s	462m	380s		551w.540sh.531s
	(K M)2~~~~~2	1574s 1558m	400m			369s 294s 280sh
		1539sh 1532s	3938			260m 229m 169s
		1527sh 1505m	5755			153m
4	(O_{1}) , SnCy.	1595sh 1584s	461m	535m		643m 628m 602vs
-	$(Q_M)_2 \text{SHC} y_2$	1565ve 1557eh	401m	528m		371m 338m 317m
		1505 v 3,155 7 3h	300ve	52011		300m 279w 265m
		15228,149011	59048			216m
5	(\mathbf{O}_{n}) Sn \mathbf{D}_{n}	1507ab 1585wa	155.00	522		640m 620m 601a
5	$(\mathbf{Q}_{\mathbf{M}})_2 \circ \mathbf{D} \mathbf{Z}_2$	15730 15680	4080	5528		554w 418m 368m
		15/58,15088	4005			202- 280 268
		155/m,155/m	3938n			3038,280W,208W
($(\mathbf{O}_{\mathbf{A}}) \in \mathbf{D}_{\mathbf{A}}$	15240F,15048	460	200		248m,220m
0	$(Q_M)_2 \operatorname{SnPn}_2$	1602s,1586s	460s	2668		642w,630w,605s
		15/4s,155/sh	409m	245m		53/s,443s,426s
		1525sh,1520s	233m			368m,30/m,219w
	0.11	1504s				206w,191w,165m
	Q _D H	1686s,1628sbr				620s,598m,575s
		1584s,1520s				552w,454w,425s
		1506sh				39/m,329s,280w
						243m,251s,203w
_	(0.) 0.10					195m
7	$(Q_D)_2 SnMe_2$	1601sbr,1575s	456s	586s		639s,615m,598s
		1557m,1526s	419m			552w,374m,368m
		1505s	398m			353w,326w,303m
						280s,253m,247s
						222m,202s,17/s
_						151s
8	$(Q_D)_2 SnEt_2$	1598sbr,1557sh	457s	551s		642m,625w,606s
		1527s,1501m	421m			499w,351w,291s
		370m				268w,220m,165sbr
9	$(Q_D)_2 SnBu_2^n$	1605sh,1592vs	458s	603sbr		631s,495w,368m
		1557sh,1530m	412s	510w		351w,289m,262w
		1487m	406s			247w,201m
						393m
10	$(Q_D)_2 SnBu_2^t$	1592sbr,1575s	457sbr	376m		633s,605s,551w
		1557sh,1531m	406m			495w,351w,292s
		1505m	392s			263m,225w,201m
						170sbr
11	$(Q_D)_2 SnCy_2$	1595sbr,1577s	459m	501w		631s,606s,552w
		1558s,1526s	408sbr	490w		374m,352w,341w
		1506s				326m,291w,280m
						267m,252w,224m
						187vs,169sh,151s
12	$(Q_D)_2 SnBz_2$	1599vs,1583s	458s	554m		631s,604s,501w
		1575s,1557s	415sbr			489w,340m,327m
		1538s,1531sh				289s,268s,225w
		1504s				179sbr,155w
13	$(Q_{\rm D})_2 {\rm SnPh}_2$	1598s,1587s	464sbr	277s		643m,623w,605m
		1556s,1539m	435sbr	244s		553m,373s,291m
		1528s 1502m				205w 179m

Table 2 (continued)

No.	Compound	$1700-1500 \text{ cm}^{-1}$	Sn–O	Sn-C	$Sn-X^a$	$<650 \text{ cm}^{-1}$
14	(Q _D) ₂ SnMeCl	1597sbr,1574s 1532s,1505s 447s	471s 454sh	541s	303sbr	643m,619m,603s 371s,274s,217m 203m,187s
15	$(Q_D)_2 SnCl_2$	1602s,1574sbr 1534m,1508s 302m	463vsbr 330vs		338sh	619m,604vs,553w 374s,269m,203sh 197s,169m,159m
16	$(Q_D)_2 SnF_2$	1601s,1582s 1574s,1537s 1514s	473vsbr 440sh		588s 576s	620sh,605s,555sh 377m,342w,298w 267w,228mbr,178sh
17	$(Q_D)_2 SnBr_2$	1598s,1578vs 1533m,1506sh 458s 228m	471sh 463s 234m		253m 246vs	615m,604s,552m 542sh,419w,398w 376m,354w,324w 302w,290w,280m 265w,203w,171m 151s
18	$(Q_D)_2 SnI_2$	1593vsbr, 1575sh 15232m, 1504m	470sh 454s		221sbr 204sh	618sh,603s,552w 372m,296m,268m 138m
19	$(Q_M)_2 SnF_2$	1597s,1583s 1568s,1512vs	468sbr		588mbr	641w,629m,604s 551s,510w,373m 311m,267sh,239sbr 188sh
20	$(Q_M)_2 SnBr_2$	1590sbr,1580sh 1573s,1567vs 1558s,1523s	464sh 455s		247vs 235sh	640w,628m,603s 549s,370w,334sh 315m,152m 1510sh,1504s
21	$(Q_M)_2 SnI_2$	1591s,1578s 1558m,1525m 1505m	467m 452s		222s 202s	640w,629m,603s 544s,370w,314m 260m
22	$(Q')_2 SnF_2$	1599s,1558s 1537s,1504s 450m	475s 468s		592s 588sh	645w,622m,618w 554s,506m,398w 355m,335m,289w 280w,245m,227s 202w 151m
23	$(Q')_2 SnI_2$	1594s,1581s 1560vs,1540s 1525s	452s 443sh 432m		234sh 225vs 206s 199sh	643w,622s,611m 555s,515m,502m 468w,406w,382w 352m,337m,324m 300w 249m 187w
24	$(Q'')_2 SnF_2$	1601s,1592s 1574s,1538s 1504m	489s 410m		595m 582vs	646w,622m,612m 563m,512m,394m 358w,333m,303w 279w,267w,252s 227w,214m,181w 151m
25	(Q") ₂ SnBr ₂	1595sbr,1554s 1514sbr	485s 403m		234vsbr	644w,625s,612s 582w,552w,511s 390sh,353w,329w, 308m,277m,202w 171m,151w
26	$(Q'')_2 SnI_2$	1597s,1556s 1538s,1503s	472sh 460s 404m		223s 217sh 208s	642w,620s,611s 582w,553w,509s 391m,354w,328m 303m,276m,245w 183w,151w

 $^{a}\;X=F,\;Cl,\;Br\;\;or\;\;I.$

2.3. NMR data

The NMR data of the ligands and of compounds 1-26 are reported in Table 3 (¹H), Table 4 (¹³C) and Table 5 (¹¹⁹Sn).

In the ¹H-NMR spectra of the complexes $(Q)_2 SnR_2$ and $(Q)_2 SnX_2$ an upfield shift of the hydrogens in the R^1 , R^2 and R^3 groups is generally observed. In the ¹³C-NMR spectra two trends are observed, in agreement with those previously reported for analogues

Fig. 3. Far-IR spectra of $(Q_M)_2 Sn X_2$.

 $(Q)_2SnR_2$ derivatives. Carbon atoms C(3), C(4), C(5) and those of the R² and R³ groups are deshielded and resonate upfield, whereas those of R¹ and of the chain carbonyl are downfield shifted upon coordination.

When at least one halogen is bonded to tin, several isomers are present in solution.

The ${}^{n}J_{(Sn-H)}$ coupling constants are typical of trans six-coordinate tin compounds [15]. The ${}^{1}J_{(Sn-C)}$ of di-*n*butyltin(IV) derivatives **2** and **9** and of diethyltin(IV) and dicyclohexyltin(IV) derivatives **1**, **4** and **11** can be used, in the empirical equations of Holecek [16] and of Lockhart [17] respectively, to derive C-Sn-C values (155 for **1**, 161 for **2**, 149 for **4**, 163 for **9** and 149° for **11**) which indicate distorted *trans* octahedral configurations.

The proton and carbon spectra of all the dihalotin(IV) derivatives always show two, three or four sets of resonances, due to the presence of isomers in solution.

We have carried out variable temperature ¹H-NMR experiments for the $(Q_D)_2SnF_2$ and $(Q_D)_2SnCl_2$ com-

plexes in 1,1,2,2-tetrachloroethane- d_2 in the range 0–130°C (Fig. 4). The solvent was chosen because of its long liquid range and its homologous relationship with deuterated chloroform and dichloromethane. 1,1,2,2-Tetrachloroethane has a single sharp resonance at 2.17 ppm, which does not overlap with any of the derivative absorptions.

The methyl region between 2.20 and 3.60 ppm shows, at room temperature (r.t.), three main groups of bands, one for each methyl of the donor (Q_D) (N(1)–Me, C(3)–Me and (C=O)–Me). Each group is composed of two or four signals, with additional broadening and side bands caused by long-range (${}^{1}H{-}^{19}F$) coupling in the spectrum of $(Q_D)_2SnF_2$. The increase of the temperature causes a progressive broadening and coalescence of the resonances. As expected, at 130°C only three distinct signals are present in the spectrum of $(Q_D)_2SnF_2$, thus indicating a fluxionality between the possible configurations on the NMR time-scale. Instead, for $(Q_D)_2SnCl_2$ at 135°C the coalescence is not complete, thus indicating a higher activation energy for the rearrangement in solution of the latter compound.

Table 3						
¹ H-NMR	data	(in	CDCl ₃)	of	compounds	1-26

No.	Compound	R ²	\mathbb{R}^1	R ³	Sn-R	Other data ^a
	Q _M H	2.02s	3.66s	7.40-7.63m		9.20-9.60sbr
						$(O-H \cdots O)$
1	$(Q_M)_2 SnEt_2$	1.78s	3.60s	7.45-7.52m	1.18t	$^{2}J = 96.0,90.8$
					1.60q	$^{3}J = 160.4,153.1$
2	$(Q_M)_2 SnBu_2^n$	1.75s	3.58s	7.40-7.52m	0.77t	
					1.25m	
					1.55m	
3	$(Q_M)_2 SnBu_2^t$	1.75s	3.60s	7.38-7.60m	1.20s	$^{3}J = 134.8, 126.1$
4	$(Q_M)_2 SnCy_2$	1.75s	3.55s	7.40-7.52m	1.12m	
					1.45m	
					1.97m	
5	$(O_{M})_{2}SnBz2$	1.758	3.48s	7.30 - 7.55m	2.938	${}^{2}J = 124.3.119.7$
-	(C M)2*****				6.95m	,
6	(O, r)-SnPha	1 76sbr	3 52sbr	7.30-7.45m	7 50m	
U	$(\mathbf{Q}_{\mathbf{M}})_{2}$ Sim \mathbf{m}_{2}	1.70501	5.52501	7.50 7.1511	7.20m	
					8 12dd	
	ОЧ	2 280	2 570	2.41a	0.12uu	
7	$Q_{\rm D}$	2.368	3.578	2.415	0.74-	27 102 1 08 0
/	$(Q_D)_2$ Snivie ₂	2.308	3.508	2.348	0.748	J = 103.1,98.9
8	$(Q_D)_2 SnEt_2$	2.38s	3.51s	2.36s	1.08t	$^{2}J = 95.8,91.7$
_					1.42q	$^{3}J = 158.3, 150.0$
9	$(Q_D)_2 Sn Bu_2^n$	2.38s	3.49s	2.35s	0.78t	
					1.26m	
					1.42m	
10	$(Q_D)_2 SnBu_2^t$	2.38s	3.50s	2.36s	1.11s	$^{3}J = 132.7, 126.9$
11	$(Q_D)_2 SnCy_2$	2.38s	3.48s	2.36s	1.15m	
			3.51s	2.42s	1.50m	
					1.85m	
12	$(Q_D)_2 SnBz_2$	2.22s	3.38s	2.17s	2.73s	$^{2}J = 125.2, 121.2$
13	$(Q_{\rm D})_2 \text{SnPh}_2$	2.32s	3.40sbr	2.28sbr	7.35m	$^{1}J = 86.9$
	(CD)2 ⁻¹ 2				7.58d	
					7.62d	
14	(O_{-}) . SnMeCl	2 268	3 50s	2 338	0.928	${}^{2}I = 128.6.125.3$
14	(QD)25hittleCl	2.203	3 550	2.553	0.96s	123 3 120 0
		2.525	5.555	2.503	1.04s	125.5,120.0
15	(0) $\mathbf{S}\mathbf{n}\mathbf{C}^{\dagger}$	2 405	2.450	2.528	1.045	
15	$(Q_D)_2 \operatorname{SHCI}_2$	2.408	3.438	2.448		
		2.418	5.008	2.408		
16		2 (0 h	2 40 d	2.60s		
10	$(Q_D)_2 SnF_2$	2.40s ^o	3.48s ^a	2.465		
		2.42s ^c	3.60s ^e	2.48s		
				2.59s		
				2.62s		
17	$(Q_D)_2 SnBr_2$	2.42s	3.43s	2.47s		
		2.44s	3.61s	2.50s		
18	$(Q_D)_2 SnI_2$	2.38s	3.40s	2.45s		
		2.40s	3.42s	2.47s		
		2.42s	3.58s	2.58s		
				2.62s		
19	$(Q_M)_2 SnF_2$		1.75s	3.40s	7.40-7.70mbr	
		1.80s	3.50s	8.06dbr		
		1.87s	3.52s			
		2.08s	3 628			
		2.128	3.678			
		2.120	5.075	3 70s		
20	$(\mathbf{O}_{\mathbf{r}})$ SnBr	1 780	3 450	7.40 - 7.70mbr		
20	$(Q_M)_2 \operatorname{SHD}_2$	1.705	2.400	/.+0=/./011101		
		1.0/8	2.5%			
		1.908	3.308			
		∠.04s	5.028	2.64		
				3.64s		
	(2)) (2 -			3.68s		
21	$(Q_M)_2 Snl_2$	1.78s	2.44s	7.38–7.66mbr		
		1.86s	2.46s			

Table 3 (continued)

Compound	\mathbb{R}^2	\mathbb{R}^1	R ³	Sn-R	Other data ^a
	1.88s	2.62s			
	1.92s	2.67s			
$(Q')_2 SnF_2^f$	1.80s	7.20-7.40m	7.20-7.40m		
	1.82s	7.42-7.60m	7.42-7.60m		
	1.90s	7.62-7.75m	7.62-7.75m		
	2.00s	7.95d	7.95d		
$(Q')_2 SnI_2^f$	1.68s	7.15-7.40m	7.15-7.40m		
	1.78s	7.45-7.70m	7.45-7.70m		
	1.90s	7.95dd	7.95dd		
	2.02s				
$(Q'')_2 SnF_2^g$	2.17s, 2.48s		7.25-7.50m		
	2.51s, 2.53s		7.67t, 7.89dd		
	2.56s, 2.65s				
	2.68s, 2.70s				
$(Q'')_2 SnBr_2^g$	2.35s, 2.43s		7.15-7.40m		
	2.47s, 2.51s		7.48t, 7.67dd		
	2.53s, 2.60s		7.92dd		
	2.67s				
$(Q'')_2 SnI_2^g$	2.30s, 2.42s		7.16-7.42m		
	2.44s, 2.50s		7.50t, 7.64d		
	2.53s, 2.55s		7.95dd		
	2.58s, 2.65s				
	Compound $(Q')_2 Sn F_2^f$ $(Q')_2 Sn F_2^f$ $(Q'')_2 Sn F_2^g$ $(Q'')_2 Sn Br_2^g$ $(Q'')_2 Sn I_2^g$	$\begin{array}{c c} Compound & R^2 \\ & & 1.88s \\ 1.92s \\ (Q')_2 Sn F_2^r & 1.80s \\ 1.82s \\ 1.90s \\ 2.00s \\ (Q')_2 Sn I_2^r & 1.68s \\ 1.78s \\ 1.90s \\ 2.02s \\ (Q'')_2 Sn F_2^s & 2.17s, 2.48s \\ 2.51s, 2.53s \\ 2.56s, 2.65s \\ 2.68s, 2.70s \\ (Q'')_2 Sn Br_2^s & 2.35s, 2.43s \\ 2.47s, 2.51s \\ 2.53s, 2.60s \\ 2.67s \\ (Q'')_2 Sn I_2^s & 2.30s, 2.42s \\ 2.44s, 2.50s \\ 2.58s, 2.65s \\ 2.58s \\ 2$	$\begin{array}{c cccc} Compound & R^2 & R^1 \\ & 1.88s & 2.62s \\ 1.92s & 2.67s \\ (Q')_2 Sn F_2^r & 1.80s & 7.20-7.40m \\ 1.82s & 7.42-7.60m \\ 1.90s & 7.62-7.75m \\ 2.00s & 7.95d \\ (Q')_2 Sn I_2^r & 1.68s & 7.15-7.40m \\ 1.78s & 7.45-7.70m \\ 1.90s & 7.95dd \\ 2.02s \\ (Q'')_2 Sn F_2^s & 2.17s, 2.48s \\ 2.51s, 2.53s \\ 2.56s, 2.65s \\ 2.68s, 2.70s \\ (Q'')_2 Sn Br_2^s & 2.35s, 2.43s \\ 2.47s, 2.51s \\ 2.53s, 2.60s \\ 2.67s \\ (Q'')_2 Sn I_2^s & 2.30s, 2.42s \\ 2.44s, 2.50s \\ 2.53s, 2.55s \\ 2.58s, 2.65s \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a J in Hz.

^b J(H-F) = 2.2 Hz.

 $^{\rm c}J({\rm H-F}) = 4.0$ Hz.

 $^{\rm d}J({\rm H-F}) = 7.7$ Hz.

 $^{\rm e}J({\rm H-F}) = 5.5$ Hz.

 $^{\rm f}$ Signals of R^1 and R^3 are indistinguishable.

^g Signals of \mathbb{R}^1 and \mathbb{R}^2 are indistinguishable.

In the same solvent comparable coalescence temperatures and two bands were shown by analogous acetylacetonate derivatives; these exist in solution as two *cis* isomers ([14]b). Instead, our derivatives are likely to exist in solution as a mixture of *cis* and *trans* isomers, as indicated by the presence of more than two sets of signals.

There are reports in the literature on possible mechanisms for configurational rearrangements of dihalobis(β -diketonate)tin(IV) complexes ([14]b)[18]. These include:

- 1. complete dissociation of one β -diketonate donor, to give a four- coordinate intermediate;
- 2. dissociation of a halide ion, to give a five-coordinate intermediate;
- 3. breaking of one M–O bond also to give, in this case, a five-coordinate intermediate, with a monodentate β -diketonate donor;
- 4. twisting mechanisms and consequent rearrangement without any metal-ligand bond breaking.

Intermolecular mechanisms (1) and (2) are improbable based on evidence from acetylacetonatetin(IV) derivatives ([14]b), and our complexes. In fact, it is possible from the lack of conductivity in dichloromethane solution, to exclude both the following dissociative equilibria:

$$(Q)_{2}SnX_{2} \rightleftharpoons [(Q)SnX_{2}]^{+} + Q^{-}$$
$$(Q)_{2}SnX_{2} \rightleftharpoons [(Q)_{2}SnX]^{+} + X^{-}$$

Although we cannot indicate which of the intramolecular mechanisms (3) or (4) could be operating in the present study, difficulty in obtaining crystals useful for diffraction study of $bis(\beta$ -diketonate)dihalotin(IV) derivatives may be ascribed to a mixture of isomers and fluxionality.

¹⁹F-NMR spectra also have been carried out for $(Q)_2SnF_2$ derivatives (Table 5). They show one or two absorptions in the range between +160 and +186ppm relative to the external CFCl₃ standard. They are deshielded with respect to $(acac)_2 SnF_2$ (+153 ppm) ([14]b), thus indicating that fluorine atoms behave more as donating ligands in our derivatives. Moreover, the deshielding increases on going from $(Q_D)_2 SnF_2$ (+160 ppm) to $(Q')_2 SnF_2$ (+186 ppm), in accord with a decrease of the $(Q)^{-}$ donor power, caused by a progressive substitution of one and two Me with Ph groups in \mathbb{R}^1 and \mathbb{R}^3 positions of the acylpyrazolonates. This trend can be explained in terms of the Pauling Electroneutrality Principle: the more electron donating are the β -diketonate ligands, the less electron donating are the fluorine atoms, and vice versa.

Table 4								
¹³ C-NMR	data (in	CDCl ₃)	of compounds	1–15,	23,	25	and	26

No.	Compound	\mathbb{R}^2	\mathbb{R}^1	R ³	CO	C(3)	R-Sn	Other data ^a
					C(5)	C(4)		
	Q _M H	15.5	32.5	127.7,128.3	193.0	147.0		
	~171			130.0,138.4	160.4	102.3		
1	$(Q_M)_2 SnEt_2$	16.3	31.8	127.4,128.2	191.4	148.1	9.4	${}^{1}J = 891.7,851.9$
	((M) 2 ⁻¹ - 2			130.8.139.8	162.7	103.5	21.7	,
2	$(O_{M})_{2}SnBu_{2}^{n}$	16.8	32.2	127.9.128.8	191.8	148.5	14.1.26.4	$^{1}J = 860.5.822.7$
-	$(\mathbf{x}_{\mathbf{M}})_{2}$ sing \mathbf{x}_{2}	1010	0212	131 3 140 4	163.2	104.0	27 5 29 1	${}^{2}J = 44.4$
				10110,11011	10012	10 110	2710,2711	${}^{3}J = 129.5$
3	$(Q_M)_2 SnBu_2^t$	16.4	31.6	127.4,128.2	n.o.	147.7	29.2	
				130.7,140.1	n.o.	n.o.	50.3	
4	$(Q_M)_2 SnCy_2$	16.8	32.2	127.8,128.8	192.0	148.5	27.4,29.0	$^{1}J = 819.1,785.7$
				131.1,140.7	163.3	104.3	29.3,30.0	$^{2}J = 20.5$
							30.3,47.6	$^{3}J = 94.7$
;	$(Q_M)_2 SnBz_2$	16.5	32.2	127.6,128.6	n.o.	148.4	36.8,124.6	$^{3}J = 51.2$
				131.5,138.6		104.2	127.8,129.5	$^{4}J = 32.6$
							139.8	
5	$(Q_M)_2 SnPh_2$	15.8	32.1	127.9,128.7	190.3br	148.0	128.3,128.7	$^{2}J = 58.8$
				131.2,138.5	163.9br	103.8	135.2, n.o.	$^{3}J = 86.9$
				,			,	${}^{4}J = 19.7$
	Q _D H	15.3	32.3	27.2	195.0	146.6		
					159.4	103.0		
,	(Op)_SnMe_	171	31.7	27.7	192.2	147 7	8.2	
	(CD)200002	- / • •			161.8	103.6		
2	(O_{-}) -SnFt	171	31.6	27.6	192.7	147.5	93	
,	(VD)2011212	1/.1	51.0	27.0	161.8	103.7	21.2	
	(\mathbf{O}_{n}) Subm	174	32.1	28.1	101.0	103.7	14 1 26 4	11-00000414
7	$(Q_D)_2 SIIBU_2^2$	1/.0	32.1	∠0.1	193.1	147.9	14.1,20.4	J = 0.000,041.4
					102.2	104.1	21.3,28.3	J = 43.3 ${}^{3}I = 129.6$
)	$(O_D)_2 SnBu_2^t$	17.1	31.4	27.8	193.3	147.2	29.1	J = 127.0
	(C D)2~~~~~2				n.o.	104.7	49.5	
1	$(O_{r_2})_s SnCv_s$	17.2	31.5	27.6	192.7	147.1	26 5 26 8	${}^{1}J = 820.0\ 800.0$
•	$(QD)_2 \text{Sinc} f_2$	17.2	51.5	27.0	161.9	104.0	28.5,28.8	${}^{2}I - 231$
					101.9	104.0	20.5,20.0	J = 25.1 3I = 90.4
,	(\mathbf{O}) SnB7	17.4	31.0	27.6	103 1	148.0	36 4 124 5	J = 50.4 $^{3}I = 50.5$
2	$(Q_D)_2 \operatorname{SHDZ}_2$	17.4	51.9	27.0	195.1	104.2	127 8 120 5	J = 50.5 4I = 20.5
					11.0.	104.2	127.6,129.5	J = 50.5
,	(\mathbf{O}_{n}) SmDh	17.5	22.1	27.5		149.0	140.1	21 506560
3	$(Q_D)_2 \operatorname{SnPn}_2$	17.5	32.1	27.5	n.o.	148.9	128.3,129.1	J = 39.0, 30.0
					n.o.	n.o.	133.0,148.4	$^{4}J = 93.0,89.2$
ı	(Op)_SnMeCl	16.8	31.8	26.6	192.0	148.4	99	J = 19.0
		17.0	32.1	26.6	192.6	104 1	10.2	
		17.0	54.1	26.8	162.0	104.1	11.7	
				20.0	102.4	104.3	11./	
r	(0) Sect	171	27.4	20.5	100 5	1446		
,	$(Q_D)_2 \operatorname{SHCl}_2$	17.1	∠1. 4 27.6	∠1.0 21.0	100.3	144.0		
		1/.2	27.0	21.9	100.0	144.0		
				22.0	189.2	99.8 100 1		
				22.3	159.0	100.1		
	(o) a th	1.4			159.2			
5	$(\mathbf{Q}')_2 \mathbf{SnI}_2^{\mathbf{b}}$	16.2	120.9,121.2,121.6		190.0	150.0		
		16.3	121.7,126.7,126.9		190.1	150.1		
		16.4	127.1,127.2,128.3		190.4	150.3		
		16.5	128.4,128.5,128.6		162.1	n.o.		
			128.7,128.8,128.9		162.3			
			129.0,129.1,132.3		162.4			
			132.5,132.7,136.7					
			136.8,136.9					
5	(O'') ₂ SnBr ₂	16.9	121.0	27.0	193.9	149.9		
	(,2	17.0	121.6	27.1	194.2	150.0		
		17.1	121.0	27.1	194.2	150.0		
		17.1	121.7	27.2	161 2	105.2		
		1/.2	120.7	21.3	101.2	105.4		
			127.0		101.9	105.4		
			127.1		162.0	105.5		
			127.2					

Table 4 (continued)

No.	Compound	R ²	\mathbb{R}^1	R ³	CO C(5)	C(3) C(4)	R-Sn	Other data ^a
			128.5					
			128.9					
			129.0					
			129.1					
			136.7					
			136.8					
			136.9					
26	$(Q'')_2 SnI_2$	16.9	120.9	26.9	192.9	150.0		
		17.0	121.5	27.1	193.4	150.3		
		17.1	121.6	27.3	194.2	104.8		
			126.8		161.5	105.0		
			126.9		161.8			
			127.0					
			128.7					
			128.9					
			129.0					
			129.1					
			136.7					
			136.9					

 $^{\mathrm{a}}J$ in Hz.

^b Signals of R¹ and R³ are indistinguishable.

The ¹¹⁹Sn-NMR data support our previous conclusions. In the spectra of **1–13** there is only one resonance. The values of δ (¹¹⁹Sn) observed are in agreement with the trends reported in the literature [15]. They are a function of the nature of R groups linked to tin and decrease in the following order:

Me < Bu'' < Et < Cy < Bu' < Bz < Ph

The effect caused by the substitution of each Me group by a chlorine atom is roughly additive. In Fig. 5 the trend of $(Q_D)^-$ derivatives 7, 14 and 15 is compared with that of the $(Q_M)^-$ analogues previously synthesized ([6]a). It seems that the ligand $(Q_D)^-$ behaves as a better donor than $(Q_M)^-$, due to the presence of three electron releasing methyls in R¹, R² and R³ positions, which increase the ' σ ' donor character.

In Fig. 6 the effect of increasing substitution in R groups bonded to tin on the ¹¹⁹Sn chemical shift can be seen. As expected, such an increase leads to a higher donor character of the alkyl groups (Me < Et < Cy < Bu') and is the reason for the electron density increase on the tin atom.

This is the first ¹¹⁹Sn-NMR report for derivatives having a SnO_4X_2 core, where X stands for the complete series of the halogens F, Cl, Br and I. In the literature, some reports ([14]b)([18]a) dealing with IR and ¹H-NMR trends for dihalotin(IV)(O₂-donor)₂ exist.

The (Q)₂SnF₂ derivatives absorb in the range from -740 - 770 ppm relative to SnMe₄, giving rise to two main groups of signals stemming from (¹¹⁹Sn-¹⁹F) coupling. These are of the order of 2050/2250 Hz, relatively higher than those observed in (acac)₂SnF₂, (1850/1950)

Hz) ([14]b), and in accord with the previously discussed stronger Sn-F linkage in our derivatives.

The (Q)₂SnCl₂ resonances fall between -620 and -650 ppm, those of (Q)₂SnBr₂ between -850 and -880 ppm and finally the (Q)₂SnI₂ derivatives absorb from -1300--1470 ppm. The latter are the most ¹¹⁹Sn shielded bis(acylpyrazolonate)tin(IV) derivatives synthesized. However in the literature, other SnO₄I₂ complexes are known to absorb at more negative fields, for example bis(tetraphenylimidodiphosphinato) diiodotin(IV) shows a signal at -1759 ppm [19]. In Fig. 7 the trend of ¹¹⁹Sn chemical shifts as a function of the type of halogens bonded to tin is reported: on going from F to I the absorptions describe a 2nd order polynomial function, similar to those reported in the case of R_nSnCl_{4-n} [20].

This feature can be explained by the electron withdrawing inductive effect of the halogens and, also, by a possible additional π contribution to the Sn–X bonds [20,21], in the case of Cl, Br and I, which would shield the tin nucleus to a greater extent. This *trans*-inductive effect can be schematically indicated:

 $O - Sn - \overline{X}$ (where X = Cl, Br and I)

It is probable that in the case of diffuorotin(IV) derivatives, whose resonances fall in the range between those of $(Q)_2SnCl_2$ and $(Q)_2SnBr_2$, the reverse effect is operating.

 $O - Sn - \vec{F}$

This is due to the higher electronegativity of fluorine compared to oxygen and the lack of π contribution to the Sn-F bond.

2.4. Diffraction study of $(Q_D)_2 SnCy_2$ (12)

The crystal structure of the title compound, $(Q_D)_2 \text{SnCy}_2$, is composed of well separated and discrete molecules as there are no intermolecular contacts shorter than the van der Waals radii of the atoms. Atomic coordinates for non-H atoms are given in Table 6; those for H atoms are in the supplementary material.

Table 5

¹¹⁹ Sn and ¹⁹ F-NMR data	^a (CDCl ₃) of	derivatives	1 - 26
--	--------------------------------------	-------------	--------

Compound	No.	$\delta(^{119}\text{Sn})$	Other data	$\delta(^{19}\text{F})$
$(Q_M)_2 SnEt_2$	1	- 349.9		
$(Q_M)_2 SnBu_2^n$	2	-345.5		
$(Q_M)_2 SnBu_2^t$	3	-448.5		
$(Q_M)_2 SnCy_2$	4	-421.3		
$(Q_M)_2 SnBz_2$	5	-449.0		
$(Q_M)_2 SnPh_2$	6	-485.1		
$(Q_D)_2 SnMe_2$	7	-312.9		
$(Q_D)_2 SnEt_2$	8	-351.6		
$(Q_D)_2 SnBu_2^n$	9	-347.2		
$(Q_D)_2 SnBu_2^t$	10	-448.5		
$(Q_D)_2 SnCy_2$	11	-427.7		
$(Q_D)_2 SnBz_2$	12	-449.9		
$(Q_D)_2 SnPh_2$	13	-490.3		
(Q _D) ₂ SnMeCl	14	-492.6, -493.0		
		-495.4, -499.4		
$(Q_D)_2 SnCl_2$	15	-629.4, -632.9		
		-637.0		
$(Q_D)_2 SnF_2$	16	-751.1	$^{1}J(\operatorname{Sn}-\operatorname{F}) = \operatorname{n.o.}$	+160.2
		-770.4	$^{1}J(\mathrm{Sn}-\mathrm{F}) = \mathrm{n.o.}$	
$(Q_D)_2 SnBr_2$	17	-849.4, -861.4		
		-872.8		
$(Q_D)_2 SnI_2$	18	-1318.2,		
		- 1371.9 - 1441.4,		
$(\mathbf{O}_{\mathbf{v}})$ SpE	10	- 1477.3	$\frac{1}{1}I(119Sn^{-19}E) = 2224$) + 195 1
$(Q_M)_2 \sin \Gamma_2$	19	- /45./	J(117 Sm - 17) = 2234.0	1 + 100.1
		752 5	$J(^{119}\text{Sn}-^{19}\text{F}) = 2188.1$)
		- 152.5	J(117 sn - 17) = 2297.5	
(\mathbf{O}_{n}) So \mathbf{P}_{n}	20	731 / 725 6	J(-5II - F) = 2100.0	,
$(Q_M)_2 \operatorname{SnBr}_2$	20	-7300 $74/4$		
		-/37.7, -/44.4 8/80 8595		
		-340.0, -358.3 -867.2, -868.0		
$(0, \mathbf{s}) \cdot \mathbf{S}_{\mathbf{p}} \mathbf{I}$	21	-307.2, -300.9 -1318.2		
$(Q_M)_2 S m_2$	41	-1310.2,		
		- 1371.9		
$(Q')_2 SnF_2$	22	-749.4	$^{1}J(^{119}\mathrm{Sn}-^{19}\mathrm{F}) = 2200.4$	+ + 184.7
			$^{1}J(^{117}\mathrm{Sn}-^{19}\mathrm{F}) = 2131.7$	7 +186.4
		-758.0	${}^{1}J({}^{119}\mathrm{Sn}{-}^{19}\mathrm{F}) = 2237.0$)
			${}^{1}J({}^{117}\mathrm{Sn}{-}^{19}\mathrm{F}) = 2179.1$	
$(Q')_2 SnI_2$	23	n.o. ^b		
$(Q'')_2 SnF_2$	24	-745.7	$^{1}J(^{119}\mathrm{Sn}-^{19}\mathrm{F}) = 2255.3$	3 + 176.5
			${}^{1}J({}^{117}\mathrm{Sn}{}^{-19}\mathrm{F}) = 2074.6$	5
		-755.6	${}^{1}J({}^{119}\mathrm{Sn}{-}^{19}\mathrm{F}) = 2215.6$	5
			${}^{1}J({}^{117}\mathrm{Sn}{-}^{19}\mathrm{F}) = 2179.1$	
$(Q'')_2 SnBr_2$	25	-859.3, -869.6		
		-879.2		
$(Q'')_2 SnI_2$	26	n.o. ^b		

^a In ppm from external standard Sn(CH₃)₄ and CFCl₃, respectively. ^b Probably due to low solubility of compound in CDCl₃. Selected bond distances and angles are given in Table 7 and an ORTEP view of the molecule, with H atoms omitted for clarity, is shown in Fig. 8.

The molecular structure of the title compound shows the tin having coordination number six and the metal octahedral geometry strongly distorted as shown in previous related complexes. The coordination polyhedron is formed by four O atoms, from two chelating pyrazolonates, and two C atoms, from the cyclohexyl groups. The four O atoms lie in the equatorial plane and the four O–Sn–O *cis* bond angles equal 360° .

The organic groups are trans to each other although a strong distortion from 180° is found and the angle is 154.6(5)°. Another common feature in these complexes is two different sets of Sn–O distances. Thus, for one ligand there is a short bond length Sn–O1 = 2.094(9) Å (primary bond) and a longer one, Sn–O2 = 2.42(1) Å (secondary bond). For the other ligand the corresponding values are Sn–O51 = 2.132(9) Å and Sn–O52 = 2.405(8) Å. This asymmetry in bond length is a result of asymmetric nature of the ligand.

In contrast, a symmetric ligand (acacH) stabilizes the perfect octahedral complex $(acac)_2Sn(CH_3)_2$ ([5]a) with the metal on an inversion center and the same coordination environment as the title compound. In addition, the equatorial plane made by the four O atoms has the oxygen atoms associated with the primary bonds, O1 and O51, closer to each other than those associated with the secondary bonds, O2 and O52, as shown by the corresponding angles O1–Sn–O51 = 77.8(3)° and O2–Sn–O52 = 121.2(3)°.

The location of the cyclohexyl groups relative to the equatorial plane is such that they are folded towards the side of the secondary bonds. This feature decreases the repulsion among the corresponding atoms in the coordination sphere. The cyclohexyl groups show C10 and C16 displayed symmetrically above and below the equatorial plane (the angle between the bond Sn–C10 and the equatorial plane is 77° and that between the bond Sn–C16 and the equatorial plane is 78°). The title compound structure has approximate C_s symmetry.

In previous related structures [1,6,22], a phenyl group is the substituent on N1. This Ph group is coplanar with the attached pyrazole ring and has an intramolecular separation between an *ortho*-H atom and O1 of about 2.2 Å; such a distance is shorter than the corresponding sum of the van der Waals parameters (1.20 Å (H) + 1.40 Å (O) = 2.60 Å [23]). Instead, the title compound has a methyl group (C6) rather than a Ph group. This methyl has a H at a longer distance from O1, greater than 2.48 Å according to a model scheme (see Section 3). This implies that the C–O···H interactions are certainly weaker in this complex than those found in previous structures. Nevertheless, the distortion in this complex is of the same order as found for the other

Fig. 4. ¹H-NMR variable temperature experiments of $(Q_D)_2SnF_2$ (a) and of $(Q_D)_2SnCl_2$ (b).

dialkyltins pyrazolonates (range $150-162^{\circ}$), thus the characteristic distortion (skewed trapezoidal bipyramidal, STB) of this family of complexes cannot be ascribed solely to the C-O···H interaction.

Selected structural parameters for related species are shown in Table 8 and, for comparison purposes, this Table includes (acac)₂Sn(CH₃)₂ as well. Some parameters in Table 8 show clear trends. Thus, increasing the C-Sn-C angle is associated with:

- 1. a smaller difference in bond length between primary and secondary bonds (Sn-O1 and Sn-O2);
- 2. a smaller difference between O_s-Sn-O_s and O_p-Sn-O_p ($O_s/O_p = oxygen$ atom associated to secondary/primary bond);

Fig. 5. Substituent effect on the ¹¹⁹Sn chemical shift of $(Q)_2 Me_n SnCl_{2-n}$ (Q = Q_D and Q_M, average value for n = 0 and n = 1).

3. an increasing bite angle O1-Sn-O2 (and O51-Sn-O52 in the other ligand);

4. less deformation of the octahedron.

The bite angle is considered a principal reason for the octahedral deformation by Kepert [7] who calculated the repulsion among the atoms forming the coordination sphere and defined the distorted system as STB. From results of energy calculations on STB complexes containing symmetric ligands, Kepert concluded that the smaller the bite angle, the stronger the distortion. Table 8 shows that the same conclusion holds for asymmetric ligands.

The structural behavior of these complexes can be explained on the basis of the chemical modifications: 1. the organic groups attached to the metal;

- 2. the ligand substituent on C8;
- 3. the ligand substituent on N1.

In the first case, as shown ([6]c) previously, the phenyl groups attached to the tin atom stabilize the largest C-Sn-C bond angle (173.0°). The electronic nature (withdrawing effect) of this group is considered responsible for this value ([6]c). On the contrary, alkyl groups attached to the metal (better electron donors than phenyl groups) show much smaller C-Sn-C angles (about 150-162°). It is observed that the distortion induced by the cyclohexyl group, which is a tertiary alkyl group, in the title compound is of the same order as that found for alkyl groups. Moreover, a comparison of the effect of a primary methyl group in $(Q')_2 Sn(Me)_2$ $(C-Sn-C = 153.3(3)^\circ)$ ([6]a), that of a secondary *n*butyl group in $(Q')_2 Sn(Bu'')_2$ $(C-Sn-C = 154.7(8)^\circ)$ ([22]a) and that of a quaternary t-butyl group in $(Q')_2 Sn(Bu')_2$ (C-Sn-C = 150.0(5)°) [1] shows even more similarity in the octahedral distortion with the title compound which has a C-Sn-C of $154.6(5)^{\circ}$. Therefore, the structural behavior of the title compound appears to corroborate previous results. This comparison does not take into account the differences among ligands (Q' and Q_D) and such an assumption appears reasonable as shown below.

With respect to the second modification, substitution on C8, it is apparent that this change implies less structural variation on the whole complex than that obtained by substitution on the metal. However, there are not yet sufficient complexes studied to elucidate the rules governing such structural variations. The same applies for substitution on N1. We will further investigate this point.

3. Experimental section

3.1. General comments

The tin(IV) and organotin(IV) halides were purchased from Alfa (Karlsruhe) and Aldrich (Milwaukee) and used as received, except for dibenzyltin dichloride which was synthesized according to a reported procedure [24].

The samples for microanalysis were dried in vacuo to constant weight (20°C, ca. 0.1 Torr). Elemental analyses (C, H, N) were performed in house with Fisons Instruments 1108 CHNS-O Elemental analyzer. Molecular weight determinations were performed with a Knauer membrane osmometer. IR spectra were recorded from 4000–100 cm⁻¹ with a Perkin-Elmer System 2000 FT-IR instrument. ¹H, ¹³C, ¹⁹F and ¹¹⁹Sn-NMR spectra were recorded on a VXR-300 Varian spectrometer operating at r.t. (300 MHz for ¹H, 75 MHz for ¹³C, 282.2 MHz for ¹⁹F and 111.9 MHz for

Fig. 6. The effect of increasing substitution of R on the ¹¹⁹Sn chemical shift of $(Q_D)_2 SnR_2$ (R = Me, Et, Cy, Bu^t).

¹¹⁹Sn). Melting points were taken on an IA 8100 Electrothermal instrument. The electrical conductance of the dichloromethane solutions was measured with a Crison CDTM 522 conductimeter at r.t.

3.2. Synthesis of the donors

The precursor 1,3-dimethyl-5-pyrazolone was synthesized by a reported procedure [25].

3.2.1. Synthesis of $Q_M H$

1,3-Dimethyl-5-pyrazolone (6.0 g, 53.5 mmol) was placed in a flask equipped with a stirrer, separating funnel and a reflux condenser and dissolved in dry dioxane (60 ml) by warming. Calcium hydroxide (10.0 g, 135 mmol) and then benzoyl chloride (6.5 ml, 7.9 g, 56.0 mmol) were added, the latter dropwise for 10 min. The mixture was heated to reflux overnight and then poured into HCl 2 N (200 ml) to decompose the calcium complex. The resulting clear solution was heated to reduce the volume to one half, then ice was added and a precipitate formed. It was filtered and recrystallized from methanol–water and dried to constant weight (8.2 g, 38.2 mmol, 71% yield).

3.2.2. Synthesis of $Q_D H$

1,3-Dimethyl-5-pyrazolone (6.0 g, 53.5 mmol) was placed in a flask equipped with a stirrer, separating funnel and a reflux condenser and dissolved in dry dioxane (60 ml) by warming. Calcium hydroxide (10.0 g, 135 mmol) and then acetyl chloride (3.8 ml, 4.2 g, 54.0 mmol) were added, the latter dropwise for 10 min. The mixture was heated to reflux overnight and then

poured into HCl 2 N (200 ml) to decompose the calcium complex. The resulting clear solution was heated to reduce the volume to one half, then dichloromethane (100 ml) was added and two phases formed. The organic phase, separated from the aqueous phase, was evaporated under reduced pressure to give a light brown solid, which was recrystallized from diethyl ether and dried to constant weight (4.6 g, 29.4 mmol, 55% yield).

3.3. Synthesis of the complexes

3.3.1. Diethyltin(IV)bis(1,3-dimethyl-4-benzoylpyrazolon-5-ato) $(Q_M)_2$ SnEt₂ (1)

Diethyltin dichloride (0.248 g, 1 mmol) was added to a methanolic solution (30 ml) of the ligand Q_MH (0.432 g, 2 mmol) and KOH (0.112 g, 2 mmol). The clear solution was stirred overnight at r.t., then water was added (15 ml). Immediately a precipitate formed, which was filtered, recrystallized from a mixture of chloroform and light petroleum and dried to constant weight. The complexes (Q_D)₂SnMe₂, (Q_D)₂SnEt₂ and (Q_D)₂SnMeCl were synthesized by the same procedure.

3.3.2. Di-n-butyltin(IV)bis(1,3-dimethyl-4-benzoylpyrazolon-5-ato) (Q_M)₂SnBuⁿ₂ (2)

A benzene solution (20 ml) of di-*n*-butyltin oxide (0.248 g, 1 mmol) was added to a benzene solution (20 ml) of the ligand Q_MH (0.432 g, 2 mmol), and the reaction mixture was refluxed for about 6 h. After removing the solvent under reduced pressure on a rotary evaporator, a thick oil was obtained. This was dissolved in diethyl ether (40 ml) and the solution left

Fig. 7. Halogen effect on ¹¹⁹Sn chemical shift of $(Q_D)_2SnX_2$ (X = F, Cl, Br and I).

to evaporate until a yellow precipitate formed. This was filtered, recrystallized from methanol/diethyl ether and dried to constant weight. The complex $(Q_D)_2 SnBu_2^n$ was obtained using the same procedure.

3.3.3. Di-t-butyltin(IV)bis(1,3-dimethyl-4-benzoylpyrazolon-5-ato) (Q_M)₂SnBu^t₂ (3)

Di-*t*-butyltin dichloride (0.304 g, 1 mmol) was added to a methanolic solution (30 ml) of the ligand $Q_M H$ (0.432 g, 2 mmol) and KOH (0.112 g, 2 mmol). The clear solution was stirred overnight at room temperature, then evaporated to dryness under reduced pressure on a rotary evaporator. The residue was treated with chloroform (20 ml) and to the filtered solution diethyl ether was added (40 ml): a yellow precipitate formed, which was filtered, recrystallized from diethyl ether and dried to constant weight. The complex $(Q_D)_2 SnBu_2^t$ was obtained using the same procedure but light petroleum was used instead of diethyl ether.

3.3.4. Dicyclohexyltin(IV)bis(1,3-dimethyl-4-benzoylpyr azolon-5-ato) $(Q_M)_2$ SnCy₂ (4)

Dicyclohexyltin dibromide (0.445 g, 1 mmol) was added to a methanolic solution (30 ml) of the ligand Q_MH (0.432 g, 2 mmol) and KOH (0.112 g, 2 mmol). The clear solution was stirred overnight at r.t., then evaporated to dryness under reduced pressure on a rotary evaporator. The residue was treated with chloroform (20 ml) and to the filtered solution diethyl ether was added (40 ml). From the solution, left to evaporate overnight at r.t., a light brown precipitate formed, which was filtered, recrystallized from a mixture of methanol/

diethyl ether and dried to constant weight. The complexes $(Q_D)_2 SnCy_2$, $(Q_D)_2 SnCl_2$, $(Q_D)_2 SnBr_2$ and $(Q_M)_2 SnBr_2$ were synthesized using the same procedure.

3.3.5. Dibenzyltin(IV)bis(1,3-dimethyl-4-benzoylpyrazolon-5-ato) $(Q_M)_2$ SnBz₂ (5)

Dibenzyltin dichloride (0.372 g, 1 mmol) was added to a methanolic solution (30 ml) of the ligand $Q_M H$ (0.432 g, 2 mmol) and KOH (0.112 g, 2 mmol). The clear solution was stirred overnight at r.t., then evaporated to dryness under reduced pressure on a rotary evaporator. The residue was treated with dichloromethane (20 ml) and methanol was added (40 ml) to the filtered solution. A precipitate formed, which was filtered, recrystallized from ethyl acetate and dried to constant weight. The complexes (Q_M)₂SnPh₂, (Q_D)₂SnBz₂ and (Q_D)₂SnPh₂ were synthesized using the same procedure.

3.3.6. Difluorotin(IV)bis(1,3-dimethyl-4-acetylpyrazolon-5-ato) $(Q_D)_2$ SnF₂ (16)

Tin tetrafluoride (0.195 g, 1 mmol) was added to a dichloromethane solution (40 ml) of the ligand Q_DH (0.312 g, 2 mmol). The resulting suspension was left to reflux with stirring for 2 days, then unreacted SnF_4 was removed by filtration of the hot solution and the filtrate was evaporated to dryness under reduced pressure on a rotary evaporator. The residue was extracted using hot diethyl ether (30 ml) from which a yellow precipitate slowly formed on cooling. The complexes $(Q_M)_2SnF_2$, $(Q')_2SnF_2$ and $(Q'')_2SnF_2$ were obtained in a similar way by using choloroform instead of dichloromethane.

3.3.7. Diiodotin(iv)bis(1,3-dimethyl-4-acetyllpyrazolon-5-ato) $(Q_D)_2$ SnI₂ (16)

To a THF solution (40 ml) of the derivative $(Q_D)_2 \text{SnCl}_2$, (0.607 g, 1 mmol) was added an excess of NaI (0.600 g, 4 mmol) and the resulting suspension was left to reflux with stirring for 3 days. Then it was filtered to separate the excess NaI and the NaCl formed by the Cl/I exchange, and the filtrate was evaporated to dryness under reduced pressure on a rotary evaporator. The residue was recrystallized with methanol/diethyl ether. The complexes $(Q_M)_2 \text{SnI}_2$, $(Q')_2 \text{SnI}_2$ and $(Q'')_2 \text{SnI}_2$ were synthesized in the same way.

3.4. X-ray diffraction

A preliminary study was performed using a Weissenberg Camera to determine cell parameters and space group. A $P2_1$ Syntex diffractometer was used for the measurements of the cell constants and for the data collection. A summary of crystal data together with

Table 6 Atomic coordinates and isotropic displacement parameters

Sn	0.12540(2)	0.27023(4)	0.3089(1)	2.79(2)
01	0.1350(3)	0.1674(5)	0.408(1)	3.7(2)
O2	0.0699(3)	0.2045(5)	0.183(1)	4.0(2)
O51	0.1780(2)	0.2880(4)	0.4552(9)	3.3(2)
O52	0.1364(3)	0.3972(5)	0.257(1)	3.8(2)
N1	0.1319(3)	0.0434(6)	0.437(1)	4.0(3)
N2	0.1115(4) -	-0.0182(6)	0.381(1)	4.7(4)
N51	0.2248(3)	0.3518(7)	0.599(1)	4.4(3)
N52	0.2389(4)	0.4237(8)	0.626(1)	5.0(4)
C3	0.0839(4)	0.0074(7)	0.278(2)	3.8(4)
C4	0.0862(4)	0.0853(6)	0.265(1)	2.8(3)
C5	0.1177(4)	0.1062(6)	0.371(1)	3.1(3)
C6	0.1650(5)	0.0366(9)	0.551(2)	5.0(5)
C7	0.0578(5) -	-0.0483(8)	0.192(2)	4.9(4)
C8	0.0638(4)	0.1358(7)	0.177(1)	3.3(3)
C9	0.0287(4)	0.114(1)	0.067(2)	5.8(5)
C10	0.1513(4)	0.2555(6)	0.110(1)	2.9(3)
C11	0.1608(4)	0.1752(6)	0.081(1)	3.1(3)
C12	0.1808(4)	0.1693(7)	-0.056(1)	3.9(4)
C13	0.1556(5)	0.2046(9)	-0.186(2)	4.9(4)
C14	0.1466(4)	0.2844(7)	-0.156(1)	4.1(4)
C15	0.1265(5)	0.2914(7)	-0.020(1)	4.3(4)
C16	0.0844(4)	0.3155(8)	0.439(2)	3.8(4)
C17	0.0535(4)	0.3654(9)	0.352(2)	5.2(5)
C18	0.0281(5)	0.400(1)	0.461(2)	6.9(6)
C19	0.0084(6)	0.342(1)	0.543(2)	7.4(7)
C20	0.0391(6)	0.291(1)	0.627(2)	7.2(7)
C21	0.0656(5)	0.258(1)	0.523(2)	5.8(5)
C53	0.2161(5)	0.4648(8)	0.536(2)	5.0(5)
C54	0.1863(4)	0.4257(8)	0.447(2)	4.5(4)
C55	0.1942(4)	0.3510(8)	0.493(1)	3.8(4)
C56	0.2445(4)	0.2905(8)	0.679(2)	4.9(4)
C57	0.2251(6)	0.547(1)	0.542(2)	7.6(7)
C58	0.1568(4)	0.4444(7)	0.330(2)	4.0(4)
C59	0.1494(6)	0.5237(8)	0.295(2)	6.2(6)

Table 7 Selected bond distances and angles

Distances		
Sn1-O1	2.094(9)	
Sn1-O2	2.42(1)	
Sn1-O51	2.132(9)	
Sn1-O52	2.405(8)	
Sn1-C10	2.17(1)	
Sn1-C16	2.14(1)	
O1-C5	1.29(1)	
O2-C8	1.27(2)	
O51-C55	1.30(2)	
O52-C58	1.25(2)	
Angles		
C(16)-Sn(1)-C(10)	154.6(5)	
O(2)-Sn(1)-O(1)	80.4(3)	
O(52)-Sn(1)-O(51)	80.5(3)	
O(51) - Sn(1) - O(1)	77.8(3)	
O(52)-Sn(1)-O(2)	121.2(3)	
O(51)-Sn(1)-O(2)	158.2(3)	
O(52) - Sn(1) - O(1)	158.3(4)	
C(10)-Sn(1)-O(1)	101.6(4)	
C(10)-Sn(1)-O(2)	85.3(4)	
C(10)-Sn(1)-O(51)	98.4(4)	
C(10)-Sn(1)-O(52)	81.8(4)	
C(16)-Sn(1) - O(1)	100.2(4)	
C(16)-Sn(1)-O(2)	85.6(4)	
C(16)-Sn(1)-O(51)	98.8(4)	
C(16)-Sn(1)-O(52)	82.7(4)	

details of data collection and computer resolution is given in Table 9. Monitoring of the standard reflections [0,4,0], [0, -4,0] and [1,1, -1], taken every 100 reflections, indicated no decay. A ψ -scan showed no absorption anisotropy. Data were corrected for Lorentz and polarization effects. The molecular structure was solved using the heavy atom method with CAOS [26]. Subsequent calculations were performed as follows: refinement based on the minimization of the function $\Sigma w(|F_{o}| - |F_{c}|)^{2}$ with the weighting scheme $w = 1/(a + 1)^{2}$ $F_{0} + cF_{0}^{2}$, where a and c are of the order of $2F_{0}(\min)$ and $2/F_{o}(\max)$ [27], respectively; H atoms were introduced at fixed positions according to C-H distance = 0.96 Å. Anisotropic displacement parameters were allowed for non-H atoms and H isotropic displacement parameters were kept fixed during refinement. The final refinement showed no residual peaks. Atomic scattering factors and anomalous dispersion terms were taken from the literature [28].

4. Supplementary material

Hydrogen coordinates, full list of bond distances and angles and anisotropic displacement parameters. F_o/F_c listing is available from F. Caruso (e-mail: caruso@isc.mlib.cnr.it).

Fig. 8. ORTEP view of the compound (Q_D)₂SnCy₂.

Table 8 Selected geometrical data in the coordination sphere for diorganotinbis(β -diketonate) compounds

Compound ^a	Sn–O ^b _p (a)	$\begin{array}{c} Sn-O_s^c \ (b) \end{array}$	(b)–(a)	Sn-C	O _p -Sn-O _p	O _s -Sn-O _s	O _p -Sn-O _s (bite)	C-Sn-C	Geometry	Ref.
$Me_2Sn(acac)_2$	2.18(1) 2.20(2)			2.14(2)	94(1)		86(1)	180	Octahedral	([5]a)
$Ph_2Sn(Q_{Br})_2$	2.143(7) 2.12(1)	2.223(8) 2.26(1)	0.08 0.14	2.11(1) 2.11(2)	91.9(3)	98.6(3)	84.5(4) 85.1(3)	173.0(7)	STB	([6]c)
$Bz_2Sn(Q^{OMe})_2$	2.105(6) 2.109(7)	2.359(7) 2.329(7)	0.254 0.220	2.12(1) 2.15(1)	84.1(3)	107.4(2)	83.5(2) 85.0(3)	164.5(4)	STB	([6]e)
$Me_2Sn(Q'')_2$	2.123(4) 2.105(5)	2.288(4) 2.321(4)	0.165 0.216	2.101(8) 2.118(7)	82.7(1)	111.5(2)	82.9(2) 83.2(1)	162.1(3)	STB	([22]b)
$Me_2Sn(Q_2^{O-i-Pr)}$	2.10(1) 2.09(1)	2.39(1) 2.39(1)	0.29 0.30	2.07(2) 2.09(2)	82.0(4)	112.7(4)	81.8(4) 83.7(4)	157.0(8)	STB	([6]d)
$Bu_2^n Sn(Q')_2$	2.12(2) 2.11(2)	2.35(2) 2.38(2)	0.23 0.27	2.07(2) 2.12(2)	79.2(5)	118.7(4)	82.0(4) 80.3(4)	154.7(8)	STB	([22]a)
$Cy_2Sn(Q_D)_2$	2.094(9) 2.132(9)	2.42(1) 2.405(8)	0.326 0.273	2.17(1) 2.14(1)	77.8(3)	121.2(3)	80.4(3) 80.5(3)	154.6(5)	STB	This work
$Me_2Sn(Q_{\rm Br})_2$	2.104(4) 2.099(4)	2.385(5) 2.436(5)	0.281 0.337	2.097(8) 2.099(8)	75.5(2)	126.7(2)	78.5(2) 79.5(2)	154.5(3)	STB	([6]b)
$Me_2Sn(Q')_2$	2.104(3) 2.103(4)	2.337(4) 2.412(4)	0.233 0.309	2.095(8) 2.090(8)	77.2(1)	121.6(1)	80.9(1) 80.7(1)	153.3(3)	STB	([6]a)
$\operatorname{Bu}_2^t\operatorname{Sn}(Q')_2$	2.145(5) 2.135(6)	2.381(7) 2.461(6)	0.236 0.326	2.20(1) 2.20(2)	74.1(2)	127.4(2)	79.3(2) 79.8(2)	150.0(5)	STB	[1]

^a acac = pentane-2,4-dionato; Q' = 1-phenyl-3-methyl-4-benzoylpyrazolon-5-ato; Q'' = 1-phenyl-3-methyl-4-acetylpyrazolon-5-ato; $Q_{Br} = 1$ -phenyl-3-methyl-4-isopropoxycarbonylpyrazolon-5-ato; $Q^{OMe} = 1$ -phenyl-3-methyl-3-meth methoxycarbonyl pyrazolon-5-ato; $Q^{D-1-PT} = 1$ -phenyl-3-methyl-4-ise methoxycarbonyl pyrazolon-5-ato; $Q_D = 1,3$ -dimethyl-4-acetylpyrazolon-5-ato. ^b O_p , primary bond.

^c O_s, secondary bond.

Table 9 Summary of crystal data

Formula	$C_{24}H_{40}N_4O_4Sn$
Formula weight	567.30
a (Å)	34.398(10)
b (Å)	18.242(7)
c (Å)	9.248(3)
β (°)	97.81(3)
Volume (A ³)	5749(3)
Space group	C2/c
Z	8
Crystal dimensions	$0.35 \times 0.20 \times 0.20$
(mm)	
Density calc. (g cm-	1.311
3)	
Temperature	298 K
F(000)	2352
$\mu ({\rm cm}^{-1})$	9.296
Radiation	Mo-Ka
Data collection mode	ω
Scan speed (° min ⁻¹)	2
Scan range (°)	0.6
Background counts	1/4 of scan time at the end of scan range
2θ range (°)	3-56
Reflections refined	2886
Final no. variables	316
R_f, R_w	0.059, 0.080

Acknowledgements

Financial support by Università degli Studi di Camerino, Consiglio Nazionale delle Ricerche C.N.R.-Rome, Research Committee and URSI program at Vassar College.

References

- C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati, B. Bovio, J. Organomet. Chem. 405 (1991) 75.
- [2] S. Miyazaki, H. Mukai, S. Umetani, S. Kihara, M. Matsui, Inorg. Chem. 28 (1989) 3014.
- [3] K. Venkataraman, in: The Chemistry of Synthetic Dyes, vol. 1, Academic Press, New York, 1952.
- [4] M.F. Mahon, K.C. Molloy, B.A. Omotowa, M.A. Mesubi, J. Organomet. Chem. 525 (1996) 239.
- [5] (a) G.A. Miller, E.O. Schlemper, Inorg. Chem. 12 (1977) 677. (b)
 G. Poli, C.J. Cheer, W.H. Nelson, J. Organomet. Chem. 306 (1986) 347.
- [6] (a) B. Bovio, A. Cingolani, F. Marchetti, C. Pettinari, J. Organomet. Chem. 458 (1993) 39. (b) C. Pettinari, F. Marchetti, D. Leonesi, M. Rossi, F. Caruso, J. Organomet. Chem. 483 (1994) 123. (c) F. Caruso, D. Leonesi, F. Marchetti, E. Rivarola, M. Rossi, V. Tomov, C. Pettinari, J. Organomet. Chem. 519 (1996) 9. (d) C. Pettinari, F. Marchetti, A. Gregori, A. Cin-

golani, J. Tanski, M. Rossi, F. Caruso, Inorg. Chim. Acta 257 (1997) 37. (e) C. Pettinari, F. Marchetti, A. Cingolani, A. Lorenzotti, E. Mundorff, M. Rossi, F. Caruso, Inorg. Chim. Acta 262 (1997) 33.

- [7] D.L. Kepert, Prog. Inorg. Chem. 23 (1977) 1.
- [8] E.C. Okafor, B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem. 23 and references reported therein.
- [9] B.S. Jensen, Acta Chem. Scand. 13 (1959) 1347, 1668, 1890.
- [10] D. Searle, P.J. Smith, N.A. Bell, L.A. March, I.W. Nowell, J.D. Donaldson, Inorg. Chim. Acta 162 (1989) 143.
- [11] (a) A.J. Crowe, P.J. Smith, Chem. Ind. (1980) 200. (b) A.J. Crowe, P.J. Smith, G. Atassi, Chem. Biol. Interact. 32 (1980) 171. (c) M. Gielen (Ed.), Tin-based Antitumor Drugs, NATO ASI Ser. H. Cell Biology, vol. 37, Brussels, 1989.
- [12] C. Pettinari, F. Marchetti, A. Cingolani, C. Marciante, R. Spagna, M. Colapietro, Polyhedron 13 (1994) 939.
- [13] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley Interscience, New York, 1986, chap. III, pp. 259–267.
- [14] (a) M. McGrady, R.S. Tobias, Inorg. Chem. 3 (1964) 1157. (b)
 R.W. Jonas, R.C. Fay, Inorg. Chem. 12 (1973) 2599. (c) I.
 Wharf, D.F. Shiver, Inorg. Chem. 8 (1969) 914. (d) J.R. May,
 W.R. McWhinnie, R.C. Poller, Spectrochim. Acta 27A (1971) 969. (e) A.L. Smith, Spectrochim. Acta 24A (1967) 695. (f) M.S.
 Dance, W.R. McWhinnie, R.C. Poller, J. Chem. Soc. Dalton Trans. (1976) 2349. (g) G.K. Sandhu, N.S. Boparoy, J.
 Organomet. Chem. 411 (1991) 89. (h) F. Huber, M. Vornfield,
 G. Ruisi, R. Barbieri, Appl. Organomet. Chem. 7 (1993) 243.
- [15] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 16 (1985) 73.
- [16] J. Holecec, A. Lycka, Inorg. Chim. Acta 118 (1986) L15.
- [17] T.P. Lockhart, W.F. Manders, Inorg. Chem. 25 (1986) 892.
- [18] (a) J.A.S. Smith, E.J. Wilkins, J. Chem. Soc. A (1966) 1749. (b)
 R. Ueeda, Y. Kawasaki, T. Tanaka, R. Okawara, J. Organomet. Chem. 5 (1966) 194. (c) V. Doron, C. Fischer, Inorg. Chem. 6 (1967) 1917. (d) J.W. Faller, A. Davison, Inorg. Chem. 6 (1967) 182. (e) G.E. Glass, R.S. Tobias, J. Organomet. Chem. 15 (1968) 481.
- [19] R.O. Day, R.R. Holmes, A. Schmidpeter, K. Stoll, L. Howe, Chem. Ber. 124 (1991) 2443.
- [20] A.G. Davies, P.G. Harrison, J.D. Kennedy, T.N. Mitchell, R.J. Puddephatt, W. Ramsay, W. McFarlane, J. Chem. Soc. C (1969) 1136.
- [21] W.H. Nelson, Inorg. Chem. 6 (1967) 1509.
- [22] (a) S. Saxena, R. Bohra and A.K. Ray, Inorg. Chim. Acta 173 (1990) 191. (b) A. Jain, S. Saxena, R. Bohra, A.K. Ray, Main Group Met. Chem. 18 (1995) 139.
- [23] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell Univ. Press, Ithaca, New York, 1960, pp. 260.
- [24] K. Sisido, Y. Takedo, Z. Kinugawa, J. Am. Chem. Soc. 83 (1961) 538.
- [25] A.I. Vogel, Vogel's Textbook of Practical Organic Chemistry, Longman, Harlow, 1989, chap. 8, p.1150.
- [26] M. Camalli, D. Capitani, G. Cascarano, S. Cerrini, G. Giacovazzo, R. Spagna, Caos Program: User guide, 1st Strut. Chim. CNR Monterotondo Stazione, Rome, Italy, 1986.
- [27] D.J. Cruickshank, in: J.S. Rollet (Ed.), Computing Methods in Crystallography, Pergamon, Oxford, 1965, pp. 114.
- [28] International Tables for X-ray Crystallography, Kynoch, Birmingham, UK, 1974.