Tin(IV) and organotin(IV) derivatives of novel β-diketones. III ${ }^{1}$ Diorgano- and dihalotin(IV) complexes of 1,3-dimethyl-4- $\mathrm{R}\left(\mathrm{C}=\mathrm{O}\right.$)-pyrazol-5-one $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and the crystal structure of trans-dicyclohexylbis(1,3-dimethyl-4-acetylpyrazolon-5-ato)tin(IV)

C. Pettinari ${ }^{\text {a,* }}$, F. Marchetti ${ }^{\text {a }}$, A. Cingolani ${ }^{\text {a }}$, D. Leonesi ${ }^{\text {a }}$, E. Mundorff ${ }^{\text {b }}$, M. Rossi ${ }^{\text {b }}$, F. Caruso ${ }^{\text {c }}$
${ }^{a}$ Dipartimento di Scienze Chimiche, Università degli Studi, via S. Agostino 1, 62032 Camerino, Macerata, Italy
${ }^{\text {b }}$ Vassar College, Department of Chemistry, Poughkeepsie, NY 12604-0484, USA
${ }^{\text {c }}$ Istituto di Strutturistica Chimica 'G. Giacomello', CNR, CP 10, 00016, Monterotondo Stazione, Roma, Italy

Received 18 July 1997; received in revised form 6 October 1997

Abstract

Several diorgano- and dihalotin(IV) derivatives of new β-diketonate donors, 1,3-dimethyl-4- $\mathrm{R}(\mathrm{C}=\mathrm{O})$ pyrazol- 5 -ones $(\mathrm{R}=\mathrm{Me}$, $\left.\mathrm{Q}_{\mathrm{D}} \mathrm{H} ; \mathrm{R}=\mathrm{Ph}, \mathrm{Q}_{\mathrm{M}} \mathrm{H}\right)$ have been synthesized and characterized with analytical and spectroscopic methods. They are stable monomeric species, very soluble not only in aromatic and chlorohydrocarbon solvents, but also in alcohols and hydroalcoholic solutions. In the solid state, the diorganotin(IV) derivatives adopt a skewed trapezoidal bipyramidal geometry. The X-ray structure of bis(1,3-dimethyl-4-acetylpyrazolon-5-ato)dicyclohexyltin(IV) shows marked distortion of the organometallic $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle $\left(155^{\circ}\right)$ and two different sets of $\mathrm{Sn}-\mathrm{O}$ distances. The factors affecting the distortion of this type of complex are discussed. The dihalotin(IV) derivatives $(\mathrm{Q})_{2} \mathrm{SnX}_{2}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I$)$ are likely cis octahedral in the solid state, whereas in solution they exist as a mixture of cis and trans isomers. ${ }^{119} \mathrm{Sn}$-NMR solution data are discussed and related to electronic and steric properties of the β-diketonate donor, and also to the nature of the halo and organic groups bound to tin. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Tin(IV) complexes; 4-Acyl-5-pyrazolones; Crystal structure; IR; NMR

1. Introduction

A few years ago we initiated the investigation on the interaction between organotin(IV) acceptors and a class of β-diketonate ligands [1], 4-acyl-5-pyrazolones (QH), which possess the chelating moiety fused with a pyrazole ring (Fig. 1).

These molecules are currently used as metal extractants [2] and dyes [3], and they have recently shown

[^0]interesting coordination behavior with several metal ions [4].

With several of these asymmetric donors we have obtained $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ derivatives having structural and chemical properties clearly different from the analogous acetylacetonato-tin(IV) complexes [5]. Several of these complexes show X-ray crystal structures with strongly distorted octahedral geometries around tin and two different sets of $\mathrm{Sn}-\mathrm{O}$ distances and a $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle smaller than 180° [6]. Also these structures always show a short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact between the carbonyl (5 position) oxygen of the pyrazole ring and the ortho $\mathrm{C}-\mathrm{H}$ in the R^{1} phenyl (Fig. 2).

As predicted by Kepert in his theoretical model [7], an increase in octahedral distortion is accompained by a reduction of the ligand bite angle $\mathrm{O}_{\mathrm{s}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{p}}$ (where $\mathrm{O}_{\mathrm{s}} / \mathrm{O}_{\mathrm{p}}$ stands for oxygen atoms associated to secondary/ primary $\mathrm{Sn}-\mathrm{O}$ bonds). This feature can be ascribed to two factors: the type of organic groups bonded to tin and the type of substituents R^{1}, R^{2} and R^{3} in the ligand. So far we have investigated the modification in the 4 -acyl moiety $\left(\mathrm{R}^{3}\right)$, because of easier synthetic routes and, in fact, the literature reports only ligands having different R^{3} groups, with $\mathrm{R}^{1}=\mathrm{Ph}$ and $\mathrm{R}^{2}=\mathrm{Me}$ [8].

In this report we describe the synthesis of two novel ligands, $\mathrm{Q}_{\mathrm{D}} \mathrm{H}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}\right)$ and $\mathrm{Q}_{\mathrm{M}} \mathrm{H}\left(\mathrm{R}^{1}=\right.$ $\mathrm{R}^{2}=\mathrm{Me}$ and $\mathrm{R}^{3}=\mathrm{Ph}$) (see Fig. 1). For $\mathrm{R}^{1}=\mathrm{Me}$ the previously mentioned $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact is eliminated and so one factor that can potentially contribute to the octahedral distortion is avoided.

The ligand $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ can be regarded as the simplest in the family of 4 -acyl-5-pyrazolones and the most similar to acetylacetone or 2,4-pentanedione (acacH). It is interesting to note that acacH (the first ligand to be used as a complexing agent) is the prototype of β-diketonate donors, whereas $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ has now been synthesized by us, about 30 years after 1-phenyl-3-methyl-4-benzoyl-5pyrazolone ($\mathrm{Q}^{\prime} \mathrm{H}$) (Fig. 1), which can be regarded as the prototype of acylpyrazolones [9].

The ligand $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$ is a structural isomer of the previously employed 1-phenyl-3-methyl-4-acetyl-5-pyrazolone $\left(\mathrm{Q}^{\prime \prime} \mathrm{H}\right)$ (Fig. 1) ($[1,6] \mathrm{c}$) from which it differs only by the inversion of one Me with a Ph group in R^{1} and R^{3} positions.

These donors are markedly different with respect to the previously employed 4-acyl-5-pyrazolones. They show good solubility not only in several organic solvents, as did previous ligands, but also in alcohols and water: a very important property in view of the possible biological applications of their $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{IV})$ and $\mathrm{X}_{2} \mathrm{Sn}(\mathrm{IV})$ derivatives. In fact, several related $\operatorname{tin}(I V)$ compounds are known to possess in vitro antitumoral activity, comparable to that of Cisplatin [10]. It is believed that the ligand behaves as a carrier of the $\mathrm{R}_{2} \mathrm{Sn}^{2+}$ moiety through cell membranes to allow interaction with the target cell. The mechanism by which these compounds

Fig. 1. 4-Acyl-5-pyrazolone proligands.

Fig. 2. The intramolecular $\mathrm{O} \cdots \mathrm{H}$ interaction.
exert their antitumor action is not known. Two factors concur to make their formulation as drugs difficult: the high cytotoxicity and insolubility in physiological media [11].

The synthesis of several $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ derivatives $(\mathrm{R}=$ $\mathrm{Me}, \mathrm{Et}, \mathrm{Bu}^{n}, \mathrm{Bu}^{t}, \mathrm{Cy}, \mathrm{Bz}, \mathrm{Ph}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I), together with a study of their analytical, spectroscopic and structural features in the solid state and in solution are reported. The X-ray crystal structure of a dicyclohexyltin(IV) derivative provides additional information about the particular mode of action of these donors.

We also report here the synthesis and characterization of novel dihalotin(IV) derivatives $(\mathrm{Q})_{2} \mathrm{SnX}_{2}(\mathrm{Q}=$ Q^{\prime} and $\mathrm{Q}^{\prime \prime} ; \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I).

2. Results and discussion

Derivatives 1, 3-8, 10-15, 17, 20 and 25 have been synthesized as reported in Eq. (1):

$$
\begin{align*}
& 2 \mathrm{QH}+2 \mathrm{KOH}+\mathrm{R}_{n} \mathrm{SnX}_{4-n} \xrightarrow{\mathrm{MeOH}}(\mathrm{Q})_{2} \mathrm{R}_{n} \mathrm{SnX}_{2-n}+2 \mathrm{KX} \\
& +2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{QH}=\mathrm{Q}_{\mathrm{M}} \mathrm{H}, \mathrm{Q}_{\mathrm{D}} \mathrm{H}, \mathrm{Q}^{\prime \prime} \mathrm{H} ; \mathrm{R}\right. \\
& \left.=\mathrm{Me}, \mathrm{Et}, \mathrm{Bu}^{t}, \mathrm{Cy}, \mathrm{Bz}, \mathrm{Ph}, \mathrm{Cl}, \mathrm{Br} ; n=0,1,2\right) \tag{1}
\end{align*}
$$

Derivatives $\mathbf{2}$ and $\mathbf{9}$ have been obtained in the following way:

$$
\begin{align*}
& 2 \mathrm{QH}+\mathrm{Bu}_{2}^{n} \mathrm{SnO}^{\text {Benzene, },}(\mathrm{Q})_{2} \mathrm{SnBu}_{2}^{n}+\mathrm{H}_{2} \mathrm{O} \\
& \quad \times\left(\mathrm{QH}=\mathrm{Q}_{\mathrm{M}} \mathrm{H}, \mathrm{Q}_{\mathrm{D}} \mathrm{H}\right) \tag{2}
\end{align*}
$$

Derivatives 16, 19, 22 and $\mathbf{2 4}$ have been obtained in the following way:

$$
\begin{align*}
& 2 \mathrm{QH}+\mathrm{SnF}_{4} \xrightarrow{\mathrm{CHCl}_{3}, \Delta}\left(\mathrm{Q}_{2} \mathrm{SnF}_{2}+2 \mathrm{HF}\right. \\
& \quad \times\left(\mathrm{QH}=\mathrm{Q}_{\mathrm{M}} \mathrm{H}, \mathrm{Q}_{\mathrm{D}} \mathrm{H}, \mathrm{Q}^{\prime \prime} \mathrm{H}, \mathrm{Q}^{\prime} \mathrm{H}\right) \tag{3}
\end{align*}
$$

Derivatives 18, 21, 23 and 26 have been obtained by halogen exchange of the corresponding dichlorotin(IV) complexes treated with a large excess of sodium iodide:

$$
\begin{align*}
& (\mathrm{Q})_{2} \mathrm{SnCl}_{2}+2 \mathrm{NaI}^{\mathrm{THF}, \Delta}(\mathrm{Q})_{2} \mathrm{SnI}_{2}+2 \mathrm{NaCl} \\
& \quad \times\left(\mathrm{QH}=\mathrm{Q}_{\mathrm{M}} \mathrm{H}, \mathrm{Q}_{\mathrm{D}} \mathrm{H}, \mathrm{Q}^{\prime \prime} \mathrm{H}, \mathrm{Q}^{\prime} \mathrm{H}\right) \tag{4}
\end{align*}
$$

Dibromo and diiodotin(IV) derivatives $(\mathrm{Q})_{2} \mathrm{SnX}_{2}(\mathrm{X}=$ Br or I) can be obtained also by oxidative addition of X_{2} to $(\mathrm{Q})_{2} \mathrm{Sn}(\mathrm{II})$ [12]:
$(\mathrm{Q})_{2} \mathrm{Sn}(\mathrm{II})+\mathrm{X}_{2} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~h} v / \Delta}(\mathrm{Q})_{2} \mathrm{SnX}_{2}$
Analytical data are reported in Table 1.
Because $\left(\mathrm{Q}_{\mathrm{M}}\right)^{-}$and $\left(\mathrm{Q}_{\mathrm{D}}\right)^{-}$derivatives have high or medium solubility in most common solvents, it is more difficult to isolate and purify their complexes with respect to previously synthesized $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ which have more hindered $(\mathrm{Q})^{-}$donors. In fact, this type of compound is generally insoluble in polar protic solvents and precipitates from the alcoholic reaction solution, whereas compounds $\mathbf{1 - 2 0}$ show high solubility in alcohol and also in hydroalcoholic solutions. The latter are colloidal type solutions.

This particular physical property can be attributed to the ligands $\left(\mathrm{Q}_{\mathrm{M}}\right)^{-}$and $\left(\mathrm{Q}_{\mathrm{D}}\right)^{-}$. In fact, the proligands $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$ and $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ possess good solubility in water, probably due to H -interactions among $\mathrm{H}_{2} \mathrm{O}$ molecules and the carbonylic O atoms and/or the $\mathrm{N}(2)$ atom (see later Fig. 8). This interaction seems not possible when the $N(1)$ environment involves hindered or lipophilic groups such as a phenyl and so the solubility in protic solvents decreases.

2.1. Conductivity and molecular weight data

Derivatives 1-26 are non-electrolytes in dichloromethane. Moreover, the osmometric molecular weight determinations (Table 1), carried out in chloroform for several compounds, indicate a stable covalent mononuclear species in solution, thus excluding any dissociative equilibrium.

2.2. Infrared data

IR and far-IR data reported in Table 2 provide information about the nature of the donor-acceptor interaction. Assignments have been made on the basis of the literature available for dihalotin(IV) and diorganobis(β-diketonate)tin(IV) derivatives.

Comparing the spectra of the neutral proligands QH and those of compounds $\mathbf{1 - 2 6}$ the disappearance of the broad band between 3200 and $2700 \mathrm{~cm}^{-1}$ can be noted. This is due to the loss of the enolic proton upon complexation and so, an absence of the O $\mathrm{H} \cdots \mathrm{O}$ intramolecular interaction.

It is known that β-diketones generally exist as a mixture of diketonic and keto-enolic tautomers. The neutral $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ ligand shows the first carbonyl band at $1680 \mathrm{~cm}^{-1}$, whereas for $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$ the value is $1630 \mathrm{~cm}^{-1}$,
therefore there is more diketonic form in $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ than in $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$.

The shift towards lower frequencies of the $v(\mathrm{C}=\mathrm{O})$ indicates strong coordination of the ligand in the monoanionic form through both the carbonylic oxygens. In the region $470-390 \mathrm{~cm}^{-1}$ we have observed two or more strong absorptions, which have been assigned to $v(\mathrm{Sn}-\mathrm{O})$ stretching [13]. The appearance of several $\mathrm{Sn}-\mathrm{O}$ bands is likely due to the presence of different $\mathrm{Sn}-\mathrm{O}$ bond distances (see diffraction study below). These absorptions also appear at higher frequencies (about $10-20 \mathrm{~cm}^{-1}$) with respect to those of the previously synthesized $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ compounds $[1,6]$, thus indicating a stronger donor-acceptor interaction.

In the region below $650 \mathrm{~cm}^{-1}$ we assign other bands to $v(\mathrm{Sn}-\mathrm{C})$ stretching modes [14]. In the case of $\mathrm{Me}, \mathrm{Et}, \mathrm{Bu}^{n}, \mathrm{Bz}$ and Ph groups bonded to tin, welldistinguished strong or medium absorptions are found, but in the case of derivatives containing Cy and Bu^{t} groups the assignements are not certain, due to the presence of $\mathrm{Sn}-\mathrm{O}$ and donor bands in the same area.

The absorptions due to $\mathrm{Sn}-\mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ are observed at very different frequencies (Fig. 3).

In the spectra of $\mathbf{1 6}, \mathbf{1 9}, 22$ and 24 , the $v(\mathrm{Sn}-\mathrm{F})$ are found at $580-560 \mathrm{~cm}^{-1}$ as one or two medium absorptions ([14]b). For the cis isomer, both symmetric and asymmetric $\mathrm{Sn}-\mathrm{F}$ stretching modes are IR active. Also in the spectra of 15 , and of the other $(\mathrm{Q})_{2} \mathrm{SnCl}_{2}$ derivatives (where $\mathrm{Q}=\mathrm{Q}_{\mathrm{M}}, \mathrm{Q}^{\prime}$ and $\mathrm{Q}^{\prime \prime}$) $[1,6]$ the $v(\mathrm{Sn}-$ $\mathrm{Cl})$ fall at $350-330 \mathrm{~cm}^{-1}$ as two broad and intense peaks, indicating the presence of cis isomers in the solid state. Whereas in the spectra of $\mathbf{1 7}, \mathbf{2 0}, 25$ and $\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnBr}_{2}$ [12], the $v(\mathrm{Sn}-\mathrm{Br})$ fall at $250-200 \mathrm{~cm}^{-1}$ and, in these cases, there are two or more strong bands. Finally, also diiodotin(IV) derivatives 18, 21, 23 and 26 show two or more strong absorbances due to $v(\mathrm{Sn}-\mathrm{I})$ at about $200-220 \mathrm{~cm}^{-1}$. Therefore, for dibromo- and diiodotin(IV) compounds we cannot exclude the presence of both cis and trans isomers in the solid state.

In addition, the $v(\mathrm{Sn}-\mathrm{O})$ also are influenced by the type of halogens bonded to tin. In fact, these occur at higher frequencies in the presence of fluorine atoms, whereas they occur at lower frequencies in diiodo$\operatorname{tin}(\mathrm{IV})$ derivatives. The $\sim 10 \mathrm{~cm}^{-1}$ increase in frequency of these bands on going from $(\mathrm{Q})_{2} \mathrm{SnI}_{2}$ to $(\mathrm{Q})_{2} \mathrm{SnF}_{2}$ can be interpreted in terms of the inductive effect of the increasing electron withdrawing power of the corresponding halogens, which strengthens the $\mathrm{Sn}-\mathrm{O}$ bonds. Another explanation could be based on the variation in mass of the $\operatorname{SnX} X_{2}$ group to which the oxygens are linked in the series $(\mathrm{Q})_{2} \mathrm{SnX}_{2}$.

This effect provides further support to our assignment of the $450 \mathrm{~cm}^{-1}$ bands to $\mathrm{Sn}-\mathrm{O}$ stretching modes.

Table 1
Analytical data of compounds 1-26

Compound (empirical formula)	No.	M.p. (${ }^{\circ} \mathrm{C}$)	Yield (\%)	Elemental analyses ${ }^{\text {a }}$			F.W.	M.W. ${ }^{\text {b }}$	Conc. ${ }^{\text {c }}$	$r^{\text {d }}$
				C	H	N				
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnEt}_{2}$	1	167-170	58	55.3	5.5	9.3	607	476	1.0×10^{-2}	0.78
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(55.4)	(5.3)	(9.2)		508	2.0×10^{-2}	0.84
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}^{n}$	2	83-85	85	57.7	6.3	8.4	663	519	1.1×10^{-2}	0.78
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(57.9)	(6.1)	(8.4)		608	2.2×10^{-2}	0.92
								570	0.6×10^{-2}	0.86
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	3	242-244	71	57.7	6.0	8.3				
$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(57.9)	(6.1)	(8.4)				
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCy}_{2}$	4	137-140	66	60.1	6.4	7.7				
$\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(60.4)	(6.2)	(7.8)				
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBz}_{2}$	5	65-69	44	62.2	4.8	7.5	731	636	0.9×10^{-3}	0.87
$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(62.4)	(4.9)	(7.7)		649	1.8×10^{-2}	0.89
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnPh}_{2}$	6	104-108	78	62.3	4.5	7.9				
$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(61.5)	(4.6)	(8.0)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMe}_{2}$	7	220-221	74	42.5	5.5	12.0	455	476	1.8×10^{-2}	1.05
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(42.3)	(5.3)	(12.3)		455	1.0×10^{-2}	1.00
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnEt}_{2}$	8	178-181	70	45.0	6.3	11.2				
$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(44.8)	(5.8)	(11.6)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{n}$	9	76-77	64	48.7	6.8	10.2				
$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(49.0)	(6.7)	(10.4)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	10	191-192	68	48.1	6.9	10.2	539	556	1.0×10^{-2}	1.03
$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(49.0)	(6.7)	(10.4)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}$	11	145-147	76	55.6	5.5	9.3	591	537	1.0×10^{-2}	0.91
$\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(55.4)	(5.3)	(9.2)		498	1.8×10^{-2}	0.84
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBz}_{2}$	12	177-179	58	55.0	5.5	8.9	607	509	0.9×10^{-2}	0.84
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(55.4)	(5.3)	(9.2)		500	0.9×10^{-2}	0.82
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnPh}_{2}$	13	205-208	80	54.1	5.0	9.4	579	556	1.1×10^{-2}	0.96
$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(53.9)	(4.9)	(9.6)		493	1.8×10^{-2}	0.85
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMeCl}$	14	209-211	54	38.1	4.5	11.5				
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(37.9)	(4.4)	(11.9)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$	15	102-105	75	34.1	3.9	11.1				
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(33.9)	(3.7)	(11.3)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$	16	195-200	54	36.6	4.0	12.0				
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(36.3)	(3.9)	(12.1)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBr}_{2}$	17	234-239	63	28.5	3.2	9.4				
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(28.7)	(3.1)	(9.6)				
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnI}_{2}$	18	280dec	55	24.5	2.8	8.2				
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(24.8)	(2.7)	(8.2)				
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnF}_{2}$	19	128-131	84	49.3	3.9	9.5				
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(49.1)	(3.8)	(9.5)				
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBr}_{2}$	20	140 dec	74	40.5	3.1	8.0				
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(40.7)	(3.1)	(7.9)				
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnI}_{2}$	21	240 dec	68	35.8	2.9	7.1				
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(35.9)	(2.8)	(7.0)				
$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnF}_{2}$	22	252-254	74	57.2	3.8	7.8				
$\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(57.4)	(3.7)	(7.9)				
$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnI}_{2}$	23	222-225	58	44.1	2.9	6.1				
$\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(44.0)	(2.8)	(6.0)				
$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnF}_{2}$	24	265-268	83	49.0	3.9	9.3				
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(49.1)	(3.8)	(9.5)				
$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnBr}_{2}$	25	240-242	75	40.7	3.2	7.8				
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(40.7)	(3.1)	(7.9)				
$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnI}_{2}$	26	227-228	42	35.7	2.0	7.0				
$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$				(35.9)	(2.8)	(7.0)				

[^1]Table 2
IR data (nujol mull) of compounds 1-26

Table 2 (continued)

No.	Compound	$1700-1500 \mathrm{~cm}^{-1}$	$\mathrm{Sn}-\mathrm{O}$	$\mathrm{Sn}-\mathrm{C}$	$\mathrm{Sn}-\mathrm{X}^{\text {a }}$	$<650 \mathrm{~cm}^{-1}$
14	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMeCl}$	$\begin{aligned} & \text { 1597sbr,1574s } \\ & 1532 \mathrm{~s}, 1505 \mathrm{~s} \\ & 447 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 471s } \\ & \text { 454sh } \end{aligned}$	541s	303sbr	$\begin{aligned} & 643 \mathrm{~m}, 619 \mathrm{~m}, 603 \mathrm{~s} \\ & 371 \mathrm{~s}, 274 \mathrm{~s}, 217 \mathrm{~m} \\ & 203 \mathrm{~m}, 187 \mathrm{~s} \end{aligned}$
15	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$	$\begin{aligned} & 1602 \mathrm{~s}, 1574 \mathrm{sbr} \\ & 1534 \mathrm{~m}, 1508 \mathrm{~s} \\ & 302 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 463vsbr } \\ & 330 \mathrm{vs} \end{aligned}$		338sh	$\begin{aligned} & 619 \mathrm{~m}, 604 \mathrm{vs}, 553 \mathrm{w} \\ & 374 \mathrm{~s}, 269 \mathrm{~m}, 203 \mathrm{sh} \\ & 197 \mathrm{~s}, 169 \mathrm{~m}, 159 \mathrm{~m} \end{aligned}$
16	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$	$\begin{aligned} & 1601 \mathrm{~s}, 1582 \mathrm{~s} \\ & 1574 \mathrm{~s}, 1537 \mathrm{~s} \\ & 1514 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 473vsbr } \\ & \text { 440sh } \end{aligned}$		$\begin{aligned} & 588 \mathrm{~s} \\ & 576 \mathrm{~s} \end{aligned}$	620sh,605s,555sh 377m,342w,298w 267w,228mbr,178sh
17	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBr}_{2}$	$\begin{aligned} & \text { 1598s,1578vs } \\ & 1533 \mathrm{~m}, 1506 \mathrm{sh} \\ & 458 \mathrm{~s} \\ & 228 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 471sh } \\ & 463 \mathrm{~s} \\ & 234 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 253 \mathrm{~m} \\ & 246 \mathrm{vs} \end{aligned}$	$615 \mathrm{~m}, 604 \mathrm{~s}, 552 \mathrm{~m}$ 542sh, 419 w, 398 w 376m,354w,324w 302w,290w,280m 265w,203w,171m 151s
18	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnI}_{2}$	$\begin{aligned} & \text { 1593vsbr, 1575sh } \\ & 15232 \mathrm{~m}, 1504 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 470sh } \\ & 454 \mathrm{~s} \end{aligned}$		$\begin{aligned} & \text { 221sbr } \\ & \text { 204sh } \end{aligned}$	$\begin{aligned} & \text { 618sh, } 603 \mathrm{~s}, 552 \mathrm{w} \\ & 372 \mathrm{~m}, 296 \mathrm{~m}, 268 \mathrm{~m} \\ & 138 \mathrm{~m} \end{aligned}$
19	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnF}_{2}$	$\begin{aligned} & 1597 \mathrm{~s}, 1583 \mathrm{~s} \\ & 1568 \mathrm{~s}, 1512 \mathrm{vs} \end{aligned}$	468sbr		588 mbr	$\begin{aligned} & \text { 641w, } 629 \mathrm{~m}, 604 \mathrm{~s} \\ & 551 \mathrm{~s}, 510 \mathrm{w}, 373 \mathrm{~m} \\ & 311 \mathrm{~m}, 267 \mathrm{sh}, 239 \mathrm{sbr} \\ & \text { 188sh } \end{aligned}$
20	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBr}_{2}$	$\begin{aligned} & \text { 1590sbr,1580sh } \\ & \text { 1573s,1567vs } \\ & 1558 \mathrm{~s}, 1523 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 464sh } \\ & \text { 455s } \end{aligned}$		$\begin{aligned} & \text { 247vs } \\ & \text { 235sh } \end{aligned}$	$\begin{aligned} & 640 \mathrm{w}, 628 \mathrm{~m}, 603 \mathrm{~s} \\ & 549 \mathrm{~s}, 370 \mathrm{w}, 334 \mathrm{sh} \\ & 315 \mathrm{~m}, 152 \mathrm{~m} \\ & 1510 \mathrm{sh}, 1504 \mathrm{~s} \end{aligned}$
21	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnI}_{2}$	$\begin{aligned} & 1591 \mathrm{~s}, 1578 \mathrm{~s} \\ & 1558 \mathrm{~m}, 1525 \mathrm{~m} \\ & 1505 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 467 \mathrm{~m} \\ & 452 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 222 \mathrm{~s} \\ & 202 \mathrm{~s} \end{aligned}$	$640 \mathrm{w}, 629 \mathrm{~m}, 603 \mathrm{~s}$ 544s,370w,314m 260m
22	$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnF}_{2}$	$\begin{aligned} & 1599 \mathrm{~s}, 1558 \mathrm{~s} \\ & 1537 \mathrm{~s}, 1504 \mathrm{~s} \\ & 450 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 475 \mathrm{~s} \\ & 468 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 592 \mathrm{~s} \\ & 588 \mathrm{sh} \end{aligned}$	645w,622m,618w 554s,506m,398w 355m,335m,289w 280w,245m,227s 202w, 151m
23	$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnI}_{2}$	$\begin{aligned} & 1594 \mathrm{~s}, 1581 \mathrm{~s} \\ & 1560 \mathrm{vs}, 1540 \mathrm{~s} \\ & 1525 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 452 \mathrm{~s} \\ & 443 \mathrm{sh} \\ & 432 \mathrm{~m} \end{aligned}$		$\begin{aligned} & \text { 234sh } \\ & 225 \mathrm{vs} \\ & \text { 206s } \\ & \text { 199sh } \end{aligned}$	$643 \mathrm{w}, 622 \mathrm{~s}, 611 \mathrm{~m}$ 555s, $515 \mathrm{~m}, 502 \mathrm{~m}$ 468w,406w,382w $352 \mathrm{~m}, 337 \mathrm{~m}, 324 \mathrm{~m}$ 300w,249m,187w
24	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnF}_{2}$	$\begin{aligned} & 1601 \mathrm{~s}, 1592 \mathrm{~s} \\ & 1574 \mathrm{~s}, 1538 \mathrm{~s} \\ & 1504 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 489 \mathrm{~s} \\ & 410 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 595 \mathrm{~m} \\ & 582 \mathrm{vs} \end{aligned}$	646w, $622 \mathrm{~m}, 612 \mathrm{~m}$ 563m,512m,394m 358w, 333m,303w 279w,267w,252s 227w,214m,181w 151m
25	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnBr}_{2}$	$\begin{aligned} & \text { 1595sbr,1554s } \\ & \text { 1514sbr } \end{aligned}$	$\begin{aligned} & 485 \mathrm{~s} \\ & 403 \mathrm{~m} \end{aligned}$		234vsbr	$\begin{aligned} & 644 \mathrm{w}, 625 \mathrm{~s}, 612 \mathrm{~s} \\ & 582 \mathrm{w}, 552 \mathrm{w}, 511 \mathrm{~s} \\ & 390 \mathrm{sh}, 353 \mathrm{w}, 329 \mathrm{w}, \\ & 308 \mathrm{~m}, 277 \mathrm{~m}, 202 \mathrm{w} \\ & 171 \mathrm{~m}, 151 \mathrm{w} \end{aligned}$
26	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnI}_{2}$	$\begin{aligned} & 1597 \mathrm{~s}, 1556 \mathrm{~s} \\ & 1538 \mathrm{~s}, 1503 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 472sh } \\ & 460 \mathrm{~s} \\ & 404 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 223 \mathrm{~s} \\ & 217 \mathrm{sh} \\ & 208 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 642 \mathrm{w}, 620 \mathrm{~s}, 611 \mathrm{~s} \\ & 582 \mathrm{w}, 553 \mathrm{w}, 509 \mathrm{~s} \\ & 391 \mathrm{~m}, 354 \mathrm{w}, 328 \mathrm{~m} \\ & 303 \mathrm{~m}, 276 \mathrm{~m}, 245 \mathrm{w} \\ & 183 \mathrm{w}, 151 \mathrm{w} \end{aligned}$

${ }^{\mathrm{a}} \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I .

2.3. NMR data

The NMR data of the ligands and of compounds $\mathbf{1 - 2 6}$ are reported in Table $3\left({ }^{1} \mathrm{H}\right)$, Table $4\left({ }^{13} \mathrm{C}\right)$ and Table $5\left({ }^{119} \mathrm{Sn}\right)$.

In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the complexes $(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ and $(\mathrm{Q})_{2} \mathrm{SnX}_{2}$ an upfield shift of the hydrogens in the R^{1}, R^{2} and R^{3} groups is generally observed. In the ${ }^{13} \mathrm{C}$-NMR spectra two trends are observed, in agreement with those previously reported for analogues

Fig. 3. Far-IR spectra of $\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \operatorname{SnX}{ }_{2}$.
$(\mathrm{Q})_{2} \mathrm{SnR}_{2}$ derivatives. Carbon atoms $\mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(5)$ and those of the R^{2} and R^{3} groups are deshielded and resonate upfield, whereas those of R^{1} and of the chain carbonyl are downfield shifted upon coordination.
When at least one halogen is bonded to tin, several isomers are present in solution.
The ${ }^{n} J_{(\mathrm{Sn}-\mathrm{H})}$ coupling constants are typical of trans six-coordinate tin compounds [15]. The ${ }^{1} J_{(\mathrm{Sn}-\mathrm{C})}$ of di-nbutyltin(IV) derivatives $\mathbf{2}$ and 9 and of diethyltin(IV) and dicyclohexyltin(IV) derivatives $\mathbf{1 , 4}$ and $\mathbf{1 1}$ can be used, in the empirical equations of Holecek [16] and of Lockhart [17] respectively, to derive $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ values (155 for $\mathbf{1}, 161$ for $\mathbf{2}, 149$ for $\mathbf{4}, 163$ for $\mathbf{9}$ and 149° for 11) which indicate distorted trans octahedral configurations.
The proton and carbon spectra of all the dihalotin(IV) derivatives always show two, three or four sets of resonances, due to the presence of isomers in solution.
We have carried out variable temperature ${ }^{1} \mathrm{H}$-NMR experiments for the $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$ and $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$ com-
plexes in 1,1,2,2-tetrachloroethane- d_{2} in the range 0 $130^{\circ} \mathrm{C}$ (Fig. 4). The solvent was chosen because of its long liquid range and its homologous relationship with deuterated chloroform and dichloromethane. 1, 1,2,2Tetrachloroethane has a single sharp resonance at 2.17 ppm, which does not overlap with any of the derivative absorptions.

The methyl region between 2.20 and 3.60 ppm shows, at room temperature (r.t.), three main groups of bands, one for each methyl of the donor $\left(\mathrm{Q}_{\mathrm{D}}\right)(\mathrm{N}(1)-\mathrm{Me}$, $\mathrm{C}(3)-\mathrm{Me}$ and $(\mathrm{C}=\mathrm{O})-\mathrm{Me})$. Each group is composed of two or four signals, with additional broadening and side bands caused by long-range (${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$) coupling in the spectrum of $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$. The increase of the temperature causes a progressive broadening and coalescence of the resonances. As expected, at $130^{\circ} \mathrm{C}$ only three distinct signals are present in the spectrum of $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$, thus indicating a fluxionality between the possible configurations on the NMR time-scale. Instead, for $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$ at $135^{\circ} \mathrm{C}$ the coalescence is not complete, thus indicating a higher activation energy for the rearrangement in solution of the latter compound.

Table 3
${ }^{1} \mathrm{H}-\mathrm{NMR}$ data (in CDCl_{3}) of compounds $\mathbf{1 - 2 6}$

No.	Compound	R^{2}	R^{1}	R^{3}	$\mathrm{Sn}-\mathrm{R}$	Other data ${ }^{\text {a }}$
	$\mathrm{Q}_{\mathrm{M}} \mathrm{H}$	2.02 s	3.66 s	$7.40-7.63 \mathrm{~m}$		$\begin{aligned} & 9.20-9.60 \mathrm{sbr} \\ & (\mathrm{O}-\mathrm{H} \cdots \mathrm{O}) \end{aligned}$
1	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnEt}_{2}$	1.78s	3.60 s	7.45-7.52m	$\begin{aligned} & 1.18 \mathrm{t} \\ & 1.60 \mathrm{q} \end{aligned}$	$\begin{aligned} { }^{2} J & =96.0,90.8 \\ { }^{3} J & =160.4,153.1 \end{aligned}$
2	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}$	1.75s	3.58 s	7.40-7.52m	$\begin{aligned} & 0.77 \mathrm{t} \\ & 1.25 \mathrm{~m} \\ & 1.55 \mathrm{~m} \end{aligned}$	
3	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	1.75 s	3.60s	7.38-7.60m	1.20s	${ }^{3} \mathrm{~J}=134.8,126.1$
4	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCy}_{2}$	1.75s	3.55 s	7.40-7.52m	$\begin{aligned} & 1.12 \mathrm{~m} \\ & 1.45 \mathrm{~m} \\ & 1.97 \mathrm{~m} \end{aligned}$	
5	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBz2}$	1.75s	3.48 s	7.30-7.55m	$\begin{aligned} & 2.93 \mathrm{~s} \\ & 6.95 \mathrm{~m} \end{aligned}$	${ }^{2} J=124.3,119.7$
6	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnPh}_{2}$	1.76 sbr	3.52sbr	7.30-7.45m	$\begin{aligned} & 7.50 \mathrm{~m} \\ & 7.70 \mathrm{~m} \\ & 8.12 \mathrm{dd} \end{aligned}$	
	$\mathrm{Q}_{\mathrm{D}} \mathrm{H}$	2.38s	3.57s	2.41 s		
7	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMe}_{2}$	2.36 s	3.50 s	2.34 s	0.74s	${ }^{2} J=103.1,98.9$
8	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnEt}_{2}$	2.38s	3.51 s	2.36s		$\begin{aligned} { }^{2} J & =95.8,91.7 \\ { }^{3} J & =158.3,150.0 \end{aligned}$
9	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}$	2.38 s	3.49 s	2.35 s	$\begin{aligned} & 0.78 \mathrm{t} \\ & 1.26 \mathrm{~m} \\ & 1.42 \mathrm{~m} \end{aligned}$	
10	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	2.38 s	3.50 s	2.36 s	1.11 s	${ }^{3} J=132.7,126.9$
11	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}$	2.38 s	$\begin{aligned} & 3.48 \mathrm{~s} \\ & 3.51 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 1.15 \mathrm{~m} \\ & 1.50 \mathrm{~m} \\ & 1.85 \mathrm{~m} \end{aligned}$	
12	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBz}_{2}$	2.22s	3.38 s	2.17 s	2.73 s	${ }^{2} J=125.2,121.2$
13	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnPh}_{2}$	2.32s	3.40 sbr	2.28sbr	$\begin{aligned} & 7.35 \mathrm{~m} \\ & 7.58 \mathrm{~d} \\ & 7.62 \mathrm{~d} \end{aligned}$	${ }^{1} J=86.9$
14	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMeCl}$	$\begin{aligned} & 2.26 \mathrm{~s} \\ & 2.32 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.50 \mathrm{~s} \\ & 3.55 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 2.33 \mathrm{~s} \\ & 2.50 \mathrm{~s} \\ & 2.52 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 0.92 \mathrm{~s} \\ & 0.96 \mathrm{~s} \\ & 1.04 \mathrm{~s} \end{aligned}$	$\begin{aligned} & { }^{2} J=128.6,125 \cdot 3 \\ & 123.3,120.0 \end{aligned}$
15	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$	$\begin{aligned} & 2.40 \mathrm{~s} \\ & 2.41 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.45 \mathrm{~s} \\ & 3.60 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 2.44 \mathrm{~s} \\ & 2.46 \mathrm{~s} \\ & 2.60 \mathrm{~s} \end{aligned}$		
16	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$	$\begin{aligned} & 2.40 \mathrm{~s}^{\mathrm{b}} \\ & 2.42 \mathrm{~s}^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 3.48 \mathrm{~s}^{\mathrm{d}} \\ & 3.60 \mathrm{~s}^{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 2.46 \mathrm{~s} \\ & 2.48 \mathrm{~s} \\ & 2.59 \mathrm{~s} \\ & 2.62 \mathrm{~s} \end{aligned}$		
17	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBr}_{2}$	$\begin{aligned} & 2.42 \mathrm{~s} \\ & 2.44 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.43 \mathrm{~s} \\ & 3.61 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 2.47 \mathrm{~s} \\ & 2.50 \mathrm{~s} \end{aligned}$		
18	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnI}_{2}$	$\begin{aligned} & 2.38 \mathrm{~s} \\ & 2.40 \mathrm{~s} \\ & 2.42 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.40 \mathrm{~s} \\ & 3.42 \mathrm{~s} \\ & 3.58 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 2.45 \mathrm{~s} \\ & 2.47 \mathrm{~s} \\ & 2.58 \mathrm{~s} \\ & 2.62 \mathrm{~s} \end{aligned}$		
19	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnF}_{2}$	$\begin{aligned} & 1.80 \mathrm{~s} \\ & 1.87 \mathrm{~s} \\ & 2.08 \mathrm{~s} \\ & 2.12 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1.75 \mathrm{~s} \\ & 3.50 \mathrm{~s} \\ & 3.52 \mathrm{~s} \\ & 3.62 \mathrm{~s} \\ & 3.67 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.40 \mathrm{~s} \\ & 8.06 \mathrm{dbr} \end{aligned}$	$7.40-7.70 \mathrm{mbr}$	
20	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBr}_{2}$	$\begin{aligned} & 1.78 \mathrm{~s} \\ & 1.87 \mathrm{~s} \\ & 1.90 \mathrm{~s} \\ & 2.04 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.45 \mathrm{~s} \\ & 3.48 \mathrm{~s} \\ & 3.58 \mathrm{~s} \\ & 3.62 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.70 \mathrm{~s} \\ & 7.40-7.70 \mathrm{mbr} \end{aligned}$		
21	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnI}_{2}$	$\begin{aligned} & 1.78 \mathrm{~s} \\ & 1.86 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 2.44 \mathrm{~s} \\ & 2.46 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.64 \mathrm{~s} \\ & 3.68 \mathrm{~s} \\ & 7.38-7.66 \mathrm{mbr} \end{aligned}$		

Table 3 (continued)

No.	Compound	R^{2}	R^{1}	R^{3}	$\mathrm{Sn}-\mathrm{R}$	Other data ${ }^{\text {a }}$
22	$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnF}_{2}^{\mathrm{f}}$	1.88 s	2.62s			
		1.92s	2.67s			
		1.80s	7.20-7.40m	7.20-7.40m		
		1.82 s	7.42-7.60m	7.42-7.60m		
		1.90s	7.62-7.75m	$7.62-7.75 \mathrm{~m}$		
23	$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SrI}_{2}^{\mathrm{f}}$	2.00s	7.95d	7.95d		
		1.68 s	7.15-7.40m	7.15-7.40m		
		1.78 s	7.45-7.70m	7.45-7.70m		
		1.90s	7.95dd	7.95dd		
24	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnF}_{2}{ }^{\text {\% }}$	2.02s				
		$2.17 \mathrm{~s}, 2.48 \mathrm{~s}$		7.25-7.50m		
		2.51s, 2.53 s		7.67t, 7.89dd		
		$2.56 \mathrm{~s}, 2.65 \mathrm{~s}$				
25	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnBr}_{2}^{\text {\% }}$	2.68s, 2.70s				
		2.35s, 2.43 s		7.15-7.40m		
		$2.47 \mathrm{~s}, 2.51 \mathrm{~s}$		7.48t, 7.67dd		
		$2.53 \mathrm{~s}, 2.60 \mathrm{~s}$		7.92dd		
26	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnI} \mathrm{I}_{2}$	2.67s				
		$2.30 \mathrm{~s}, 2.42 \mathrm{~s}$		7.16-7.42m		
		$2.44 \mathrm{~s}, 2.50 \mathrm{~s}$		7.50t, 7.64d		
		$2.53 \mathrm{~s}, 2.55 \mathrm{~s}$		7.95dd		
		2.58s, 2.65 s				

a J in Hz .
${ }^{\mathrm{b}} J(\mathrm{H}-\mathrm{F})=2.2 \mathrm{~Hz}$.
${ }^{\mathrm{c}} J(\mathrm{H}-\mathrm{F})=4.0 \mathrm{~Hz}$.
${ }^{\mathrm{d}} J(\mathrm{H}-\mathrm{F})=7.7 \mathrm{~Hz}$.
${ }^{\mathrm{e}} J(\mathrm{H}-\mathrm{F})=5.5 \mathrm{~Hz}$.
${ }^{\mathrm{f}}$ Signals of R^{1} and R^{3} are indistinguishable.
${ }^{g}$ Signals of R^{1} and R^{2} are indistinguishable.

In the same solvent comparable coalescence temperatures and two bands were shown by analogous acetylacetonate derivatives; these exist in solution as two cis isomers ([14]b). Instead, our derivatives are likely to exist in solution as a mixture of cis and trans isomers, as indicated by the presence of more than two sets of signals.

There are reports in the literature on possible mechanisms for configurational rearrangements of dihalobis(β-diketonate)tin(IV) complexes ([14]b)[18]. These include:

1. complete dissociation of one β-diketonate donor, to give a four- coordinate intermediate;
2. dissociation of a halide ion, to give a five-coordinate intermediate;
3. breaking of one $\mathrm{M}-\mathrm{O}$ bond also to give, in this case, a five-coordinate intermediate, with a monodentate β-diketonate donor;
4. twisting mechanisms and consequent rearrangement without any metal-ligand bond breaking.
Intermolecular mechanisms (1) and (2) are improba-
ble based on evidence from acetylacetonatetin(IV) derivatives ([14]b), and our complexes. In fact, it is possible from the lack of conductivity in dichloromethane solution, to exclude both the following dissociative equilibria:
$(\mathrm{Q})_{2} \mathrm{SnX}_{2} \leftrightharpoons\left[(\mathrm{Q}) \mathrm{SnX}_{2}\right]^{+}+\mathrm{Q}^{-}$
$(\mathrm{Q})_{2} \mathrm{SnX}_{2} \leftrightharpoons\left[(\mathrm{Q})_{2} \mathrm{SnX}\right]^{+}+\mathrm{X}^{-}$
Although we cannot indicate which of the intramolecular mechanisms (3) or (4) could be operating in the present study, difficulty in obtaining crystals useful for diffraction study of bis(β-diketonate)dihalotin(IV) derivatives may be ascribed to a mixture of isomers and fluxionality.
${ }^{19} \mathrm{~F}$-NMR spectra also have been carried out for $(\mathrm{Q})_{2} \mathrm{SnF}_{2}$ derivatives (Table 5). They show one or two absorptions in the range between +160 and +186 ppm relative to the external CFCl_{3} standard. They are deshielded with respect to (acac) $)_{2} \mathrm{SnF}_{2}(+153 \mathrm{ppm})$ ([14]b), thus indicating that fluorine atoms behave more as donating ligands in our derivatives. Moreover, the deshielding increases on going from $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}(+160$ $\mathrm{ppm})$ to $\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnF}_{2}(+186 \mathrm{ppm})$, in accord with a decrease of the $(\mathrm{Q})^{-}$donor power, caused by a progressive substitution of one and two Me with Ph groups in R^{1} and R^{3} positions of the acylpyrazolonates. This trend can be explained in terms of the Pauling Electroneutrality Principle: the more electron donating are the β-diketonate ligands, the less electron donating are the fluorine atoms, and vice versa.

Table 4
${ }^{13} \mathrm{C}$-NMR data (in CDCl_{3}) of compounds $\mathbf{1 - 1 5}, \mathbf{2 3}, 25$ and 26

No.	Compound	R^{2}	R^{1}	R^{3}	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{C}(5) \end{aligned}$	$\begin{aligned} & C(3) \\ & C(4) \end{aligned}$	$\mathrm{R}-\mathrm{Sn}$	Other data ${ }^{\text {a }}$
	$\mathrm{Q}_{\mathrm{M}} \mathrm{H}$	15.5	32.5	$\begin{aligned} & 127.7,128.3 \\ & 130.0,138.4 \end{aligned}$	$\begin{aligned} & 193.0 \\ & 160.4 \end{aligned}$	$\begin{aligned} & 147.0 \\ & 102.3 \end{aligned}$		
1	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnEt}_{2}$	16.3	31.8	$\begin{aligned} & 127.4,128.2 \\ & 130.8,139.8 \end{aligned}$	$\begin{aligned} & 191.4 \\ & 162.7 \end{aligned}$	$\begin{aligned} & 148.1 \\ & 103.5 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 21.7 \end{aligned}$	${ }^{1} J=891.7,851.9$
2	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}^{n}$	16.8	32.2	$\begin{aligned} & 127.9,128.8 \\ & 131.3,140.4 \end{aligned}$	$\begin{aligned} & 191.8 \\ & 163.2 \end{aligned}$	$\begin{aligned} & 148.5 \\ & 104.0 \end{aligned}$	$\begin{aligned} & 14.1,26.4 \\ & 27.5,29.1 \end{aligned}$	$\begin{aligned} & 1 \\ &=860.5,822.7 \\ & 2 \\ &=44.4 \\ &{ }^{3} J=129.5 \end{aligned}$
3	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	16.4	31.6	$\begin{aligned} & 127.4,128.2 \\ & 130.7,140.1 \end{aligned}$	$\begin{aligned} & \text { n.o. } \\ & \text { n.o. } \end{aligned}$	$\begin{aligned} & 147.7 \\ & \text { n.o. } \end{aligned}$	$\begin{aligned} & 29.2 \\ & 50.3 \end{aligned}$	
4	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCy}_{2}$	16.8	32.2	$\begin{aligned} & 127.8,128.8 \\ & 131.1,140.7 \end{aligned}$	$\begin{aligned} & 192.0 \\ & 163.3 \end{aligned}$	$\begin{aligned} & 148.5 \\ & 104.3 \end{aligned}$	$\begin{aligned} & 27.4,29.0 \\ & 29.3,30.0 \\ & 30.3,47.6 \end{aligned}$	$\begin{aligned} & { }^{1} J=819.1,785.7 \\ & { }^{2} J=20.5 \\ & { }^{3} J=94.7 \end{aligned}$
5	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBz}_{2}$	16.5	32.2	$\begin{aligned} & 127.6,128.6 \\ & 131.5,138.6 \end{aligned}$	n.o.	$\begin{aligned} & 148.4 \\ & 104.2 \end{aligned}$	$\begin{aligned} & 36.8,124.6 \\ & 127.8,129.5 \\ & 139.8 \end{aligned}$	$\begin{aligned} & { }^{3} J=51.2 \\ & { }^{4} J=32.6 \end{aligned}$
6	$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnPh}_{2}$	15.8	32.1	$\begin{aligned} & 127.9,128.7 \\ & 131.2,138.5 \end{aligned}$	$\begin{aligned} & 190.3 \mathrm{br} \\ & 163.9 \mathrm{br} \end{aligned}$	$\begin{aligned} & 148.0 \\ & 103.8 \end{aligned}$	$\begin{aligned} & 128.3,128.7 \\ & 135.2, \text { n.o. } \end{aligned}$	$\begin{aligned} & { }^{2} J=58.8 \\ & { }^{3} J=86.9 \\ & { }^{4} J=19.7 \end{aligned}$
	$\mathrm{Q}_{\mathrm{D}} \mathrm{H}$	15.3	32.3	27.2	$\begin{aligned} & 195.0 \\ & 159.4 \end{aligned}$	$\begin{aligned} & 146.6 \\ & 103.0 \end{aligned}$		
7	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMe}_{2}$	17.1	31.7	27.7	$\begin{aligned} & 192.2 \\ & 161.8 \end{aligned}$	$\begin{aligned} & 147.7 \\ & 103.6 \end{aligned}$	8.2	
8	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnEt}_{2}$	17.1	31.6	27.6	$\begin{aligned} & 192.7 \\ & 161.8 \end{aligned}$	$\begin{aligned} & 147.5 \\ & 103.7 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 21.2 \end{aligned}$	
9	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{n}$	17.6	32.1	28.1	$\begin{aligned} & 193.1 \\ & 162.2 \end{aligned}$	$\begin{aligned} & 147.9 \\ & 104.1 \end{aligned}$	$\begin{aligned} & 14.1,26.4 \\ & 27.3,28.5 \end{aligned}$	$\begin{aligned} { }^{1} J & =880.0,841.4 \\ { }^{2} J & =43.5 \\ { }^{3} J & =129.6 \end{aligned}$
10	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	17.1	31.4	27.8	$\begin{aligned} & 193.3 \\ & \text { n.o. } \end{aligned}$	$\begin{aligned} & 147.2 \\ & 104.7 \end{aligned}$	$\begin{aligned} & 29.1 \\ & 49.5 \end{aligned}$	
11	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}$	17.2	31.5	27.6	$\begin{aligned} & 192.7 \\ & 161.9 \end{aligned}$	$\begin{aligned} & 147.1 \\ & 104.0 \end{aligned}$	$\begin{aligned} & 26.5,26.8 \\ & 28.5,28.8 \\ & 29.6,30.0 \end{aligned}$	$\begin{aligned} & 1 \\ & \\ &=820.0,800.0 \\ &{ }^{2} J=23.1 \\ &{ }^{3} J=90.4 \end{aligned}$
12	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBz}_{2}$	17.4	31.9	27.6	$\begin{aligned} & 193.1 \\ & \text { n.o. } \end{aligned}$	$\begin{aligned} & 148.0 \\ & 104.2 \end{aligned}$	$\begin{aligned} & 36.4,124.5 \\ & 127.8,129.5 \\ & 140.1 \end{aligned}$	$\begin{aligned} & { }^{3} J=50.5 \\ & { }^{4} J=30.5 \end{aligned}$
13	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnPh}_{2}$	17.5	32.1	27.5	n.o. n.o.	$\begin{aligned} & 148.9 \\ & \text { n.o. } \end{aligned}$	$\begin{aligned} & 128.5,129.1 \\ & 135.6,148.4 \end{aligned}$	$\begin{aligned} { }^{2} J & =59.6,56.0 \\ { }^{3} J & =93.0,89.2 \\ { }^{4} J & =19.0 \end{aligned}$
14	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMeCl}$	$\begin{aligned} & 16.8 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 31.8 \\ & 32.1 \end{aligned}$	$\begin{aligned} & 26.6 \\ & 26.6 \\ & 26.8 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 192.0 \\ & 192.6 \\ & 162.4 \end{aligned}$	$\begin{aligned} & 148.4 \\ & 104.1 \\ & 104.3 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 10.2 \\ & 11.7 \end{aligned}$	
15	$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$	$\begin{aligned} & 17.1 \\ & 17.2 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 27.6 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 21.9 \\ & 22.0 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 188.5 \\ & 188.8 \\ & 189.2 \\ & 159.0 \\ & 159.2 \end{aligned}$	$\begin{aligned} & 144.6 \\ & 144.6 \\ & 99.8 \\ & 100.1 \end{aligned}$		
23	$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnI}_{2}^{\mathrm{b}}$	$\begin{aligned} & 16.2 \\ & 16.3 \\ & 16.4 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 120.9,121.2,121.6 \\ & 121.7,126.7,126.9 \\ & 127.1,127.2,128.3 \\ & 128.4,128.5,128.6 \\ & 128.7,128.8,128.9 \\ & 129.0,129.1,132.3 \\ & 132.5,132.7,136.7 \\ & 136.8,136.9 \end{aligned}$		$\begin{aligned} & 190.0 \\ & 190.1 \\ & 190.4 \\ & 162.1 \\ & 162.3 \\ & 162.4 \end{aligned}$	$\begin{aligned} & 150.0 \\ & 150.1 \\ & 150.3 \\ & \text { n.o. } \end{aligned}$		
25	$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnBr}_{2}$	$\begin{aligned} & 16.9 \\ & 17.0 \\ & 17.1 \\ & 17.2 \end{aligned}$	$\begin{aligned} & 121.0 \\ & 121.6 \\ & 121.7 \\ & 126.9 \\ & 127.0 \\ & 127.1 \\ & 127.2 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 27.1 \\ & 27.2 \\ & 27.3 \end{aligned}$	193.9 194.2 194.7 161.2 161.9 162.0	$\begin{aligned} & 149.9 \\ & 150.0 \\ & 150.3 \\ & 105.2 \\ & 105.4 \\ & 105.5 \end{aligned}$		

Table 4 (continued)

${ }^{\text {a }} J$ in Hz .
${ }^{\mathrm{b}}$ Signals of R^{1} and R^{3} are indistinguishable.

The ${ }^{119} \mathrm{Sn}$-NMR data support our previous conclusions. In the spectra of $\mathbf{1 - 1 3}$ there is only one resonance. The values of $\delta\left({ }^{119} \mathrm{Sn}\right)$ observed are in agreement with the trends reported in the literature [15]. They are a function of the nature of R groups linked to tin and decrease in the following order:
$\mathrm{Me}<\mathrm{Bu}^{n}<\mathrm{Et}<\mathrm{Cy}<\mathrm{Bu}^{t}<\mathrm{Bz}<\mathrm{Ph}$
The effect caused by the substitution of each Me group by a chlorine atom is roughly additive. In Fig. 5 the trend of $\left(\mathrm{Q}_{\mathrm{D}}\right)^{-}$derivatives 7,14 and $\mathbf{1 5}$ is compared with that of the $\left(\mathrm{Q}_{\mathrm{M}}\right)^{-}$analogues previously synthesized ([6]a). It seems that the ligand $\left(\mathrm{Q}_{\mathrm{D}}\right)^{-}$behaves as a better donor than $\left(\mathrm{Q}_{\mathrm{M}}\right)^{-}$, due to the presence of three electron releasing methyls in $\mathrm{R}^{1}, \mathrm{R}^{2}$ and R^{3} positions, which increase the ' σ ' donor character.

In Fig. 6 the effect of increasing substitution in R groups bonded to tin on the ${ }^{119} \mathrm{Sn}$ chemical shift can be seen. As expected, such an increase leads to a higher donor character of the alkyl groups ($\mathrm{Me}<\mathrm{Et}<\mathrm{Cy}<$ Bu^{t}) and is the reason for the electron density increase on the tin atom.

This is the first ${ }^{119} \mathrm{Sn}$-NMR report for derivatives having a $\mathrm{SnO}_{4} \mathrm{X}_{2}$ core, where X stands for the complete series of the halogens $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I . In the literature, some reports $([14] \mathrm{b})([18] \mathrm{a})$ dealing with IR and ${ }^{1} \mathrm{H}$ NMR trends for dihalotin(IV) $\left(\mathrm{O}_{2} \text {-donor }\right)_{2}$ exist.

The $(\mathrm{Q})_{2} \mathrm{SnF}_{2}$ derivatives absorb in the range from $-740--770 \mathrm{ppm}$ relative to SnMe_{4}, giving rise to two main groups of signals stemming from (${ }^{19} \mathrm{Sn}-{ }^{19} \mathrm{~F}$) coupling. These are of the order of $2050 / 2250 \mathrm{~Hz}$, relatively higher than those observed in $(\mathrm{acac})_{2} \mathrm{SnF}_{2},(1850 / 1950$

Hz) ([14]b), and in accord with the previously discussed stronger $\mathrm{Sn}-\mathrm{F}$ linkage in our derivatives.

The $(\mathrm{Q})_{2} \mathrm{SnCl}_{2}$ resonances fall between -620 and -650 ppm , those of $(\mathrm{Q})_{2} \mathrm{SnBr}_{2}$ between -850 and -880 ppm and finally the $(\mathrm{Q})_{2} \mathrm{SnI}_{2}$ derivatives absorb from - 1300- -1470 ppm . The latter are the most ${ }^{119} \mathrm{Sn}$ shielded bis(acylpyrazolonate)tin(IV) derivatives synthesized. However in the literature, other $\mathrm{SnO}_{4} \mathrm{I}_{2}$ complexes are known to absorb at more negative fields, for example bis(tetraphenylimidodiphosphinato) diiodotin(IV) shows a signal at -1759 ppm [19]. In Fig. 7 the trend of ${ }^{119} \mathrm{Sn}$ chemical shifts as a function of the type of halogens bonded to tin is reported: on going from F to I the absorptions describe a $2^{\text {nd }}$ order polynomial function, similar to those reported in the case of $\mathrm{R}_{n} \mathrm{SnCl}_{4-n}[20]$.

This feature can be explained by the electron withdrawing inductive effect of the halogens and, also, by a possible additional π contribution to the $\mathrm{Sn}-\mathrm{X}$ bonds [20,21], in the case of Cl, Br and I , which would shield the tin nucleus to a greater extent. This trans-inductive effect can be schematically indicated:
$\mathrm{O}-\mathrm{Sn}-\overline{\mathrm{X}}$ (where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and I)
It is probable that in the case of difluorotin(IV) derivatives, whose resonances fall in the range between those of $(\mathrm{Q})_{2} \mathrm{SnCl}_{2}$ and $(\mathrm{Q})_{2} \mathrm{SnBr}_{2}$, the reverse effect is operating.
$\mathrm{O}-\mathrm{Sn}-\overrightarrow{\mathrm{F}}$
This is due to the higher electronegativity of fluorine compared to oxygen and the lack of π contribution to the $\mathrm{Sn}-\mathrm{F}$ bond.

2.4. Diffraction study of $\left(Q_{D}\right)_{2} \operatorname{SnCy}_{2}$ (12)

The crystal structure of the title compound, $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}$, is composed of well separated and discrete molecules as there are no intermolecular contacts shorter than the van der Waals radii of the atoms. Atomic coordinates for non-H atoms are given in Table 6; those for H atoms are in the supplementary material.

Table 5
${ }^{119} \mathrm{Sn}$ and ${ }^{19} \mathrm{~F}$-NMR data ${ }^{\text {a }}\left(\mathrm{CDCl}_{3}\right)$ of derivatives $\mathbf{1 - 2 6}$

Compound	No	. $\delta\left({ }^{119} \mathrm{Sn}\right)$	Other data	$\delta\left({ }^{9} \mathrm{~F}\right)$
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnEt}_{2}$	1	-349.9		
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBr}_{2}^{n}$	2	-345.5		
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBu}_{2}^{\text {d }}$	3	-448.5		
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnCy}_{2}$	4	-421.3		
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBz}_{2}$	5	-449.0		
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnPh}_{2}$	6	-485.1		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMe}_{2}$	7	-312.9		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnEt}_{2}$	8	-351.6		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{n}$	9	-347.2		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{t}$	10	-448.5		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}$	11	-427.7		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBz}_{2}$	12	-449.9		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnPh}_{2}$	13	-490.3		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMeCl}$	14	$\begin{aligned} & -492.6,-493.0 \\ & -495.4,-499.4 \end{aligned}$		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$	15	$\begin{aligned} & -629.4,-632.9 \\ & -637.0 \end{aligned}$		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$	16	$\begin{aligned} & -751.1 \\ & -770.4 \end{aligned}$	$\begin{aligned} & { }^{1} J(\mathrm{Sn}-\mathrm{F})=\text { n.o. } . \\ & { }^{1} J(\mathrm{Sn}-\mathrm{F})=\text { n.o. } \end{aligned}$	+160.2
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBr}_{2}$	17	$\begin{aligned} & -849.4,-861.4 \\ & -872.8 \end{aligned}$		
$\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnI}_{2}$	18	$\begin{aligned} & -1318.2, \\ & -1371.9 \\ & -1441.4, \end{aligned}$		
			${ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2234.0$	+185.1
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnF}_{2}$	19	-743.7 -752.5	$\begin{aligned} & \left.{ }^{1} J{ }^{117} \mathrm{Sn}-1{ }^{19} \mathrm{~F}\right)=2188.1 \\ & \left.{ }^{J} J{ }^{119} \mathrm{Sn}-19 \mathrm{~F}\right)=2297 . \\ & { }^{1} J\left({ }^{117} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2160.6 \end{aligned}$	
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBr}_{2}$	20	$\begin{aligned} & -731.4,-735.6 \\ & -739.9,-744.4 \\ & -848.0,-858.5 \\ & -867.2,-868.9 \end{aligned}$		
$\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnI}_{2}$	21	-1318.2,		
		- 1371.9		
$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnF}_{2}$	22	-749.4	$\begin{aligned} & { }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2200.4 \\ & { }^{1} J\left({ }^{(17} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2131 . \end{aligned}$	$\begin{aligned} & +184.7 \\ & +186.4 \end{aligned}$
		-758.0	$\begin{aligned} & \left.{ }^{1} J{ }^{119} \mathrm{Sn}-1{ }^{19} \mathrm{~F}\right)=2237.0 \\ & { }^{1} J\left({ }^{117} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2179.1 \end{aligned}$	
$\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnI}_{2}$	23	n.o. ${ }^{\text {b }}$		
$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnF}_{2}$	24	-745.7	$\begin{aligned} & { }^{1} J\left({ }^{119} \mathrm{Sn}-19 \mathrm{~F}\right)=2255.3 \\ & { }^{1} J\left({ }^{17} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2074.6 \end{aligned}$	$+176.5$
		-755.6	${ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2215.6$	
			${ }^{1} J\left({ }^{117} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=2179.1$	
$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnBr}_{2}$	25	$\begin{aligned} & -859.3,-869.6 \\ & -879.2 \end{aligned}$		
$\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnI}_{2}$		n.o. ${ }^{\text {b }}$		

[^2]Selected bond distances and angles are given in Table 7 and an ORTEP view of the molecule, with H atoms omitted for clarity, is shown in Fig. 8.

The molecular structure of the title compound shows the tin having coordination number six and the metal octahedral geometry strongly distorted as shown in previous related complexes. The coordination polyhedron is formed by four O atoms, from two chelating pyrazolonates, and two C atoms, from the cyclohexyl groups. The four O atoms lie in the equatorial plane and the four $\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ cis bond angles equal 360°.

The organic groups are trans to each other although a strong distortion from 180° is found and the angle is $154.6(5)^{\circ}$. Another common feature in these complexes is two different sets of $\mathrm{Sn}-\mathrm{O}$ distances. Thus, for one ligand there is a short bond length $\mathrm{Sn}-\mathrm{O} 1=2.094(9) \AA$ (primary bond) and a longer one, $\mathrm{Sn}-\mathrm{O} 2=2.42(1) \AA$ (secondary bond). For the other ligand the corresponding values are $\mathrm{Sn}-\mathrm{O} 51=2.132(9) \AA$ and $\mathrm{Sn}-\mathrm{O} 52=$ $2.405(8) \AA$. This asymmetry in bond length is a result of asymmetric nature of the ligand.

In contrast, a symmetric ligand (acacH) stabilizes the perfect octahedral complex (acac) ${ }_{2} \mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}$ ([5]a) with the metal on an inversion center and the same coordination environment as the title compound. In addition, the equatorial plane made by the four O atoms has the oxygen atoms associated with the primary bonds, O1 and O51, closer to each other than those associated with the secondary bonds, O 2 and O 52 , as shown by the corresponding angles $\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 51=77.8(3)^{\circ}$ and $\mathrm{O} 2-\mathrm{Sn}-\mathrm{O} 52=121.2(3)^{\circ}$.

The location of the cyclohexyl groups relative to the equatorial plane is such that they are folded towards the side of the secondary bonds. This feature decreases the repulsion among the corresponding atoms in the coordination sphere. The cyclohexyl groups show C10 and C16 displayed symmetrically above and below the equatorial plane (the angle between the bond $\mathrm{Sn}-\mathrm{C} 10$ and the equatorial plane is 77° and that between the bond $\mathrm{Sn}-\mathrm{C} 16$ and the equatorial plane is 78°). The title compound structure has approximate C_{s} symmetry.

In previous related structures [1,6,22], a phenyl group is the substituent on N1. This Ph group is coplanar with the attached pyrazole ring and has an intramolecular separation between an ortho -H atom and O 1 of about $2.2 \AA$; such a distance is shorter than the corresponding sum of the van der Waals parameters $(1.20 \AA$ $(\mathrm{H})+1.40 \AA(\mathrm{O})=2.60 \AA[23])$. Instead, the title compound has a methyl group (C6) rather than a Ph group. This methyl has a H at a longer distance from O 1 , greater than $2.48 \AA$ according to a model scheme (see Section 3). This implies that the $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ interactions are certainly weaker in this complex than those found in previous structures. Nevertheless, the distortion in this complex is of the same order as found for the other

Fig. 4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ variable temperature experiments of $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnF}_{2}$ (a) and of $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}$ (b).
dialkyltins pyrazolonates (range $150-162^{\circ}$), thus the characteristic distortion (skewed trapezoidal bipyramidal, STB) of this family of complexes cannot be ascribed solely to the $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ interaction.

Selected structural parameters for related species are shown in Table 8 and, for comparison purposes, this Table includes (acac) $\mathrm{Sn}_{2}\left(\mathrm{CH}_{3}\right)_{2}$ as well. Some parame-
ters in Table 8 show clear trends. Thus, increasing the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle is associated with:

1. a smaller difference in bond length between primary and secondary bonds ($\mathrm{Sn}-\mathrm{O} 1$ and $\mathrm{Sn}-\mathrm{O} 2$);
2. a smaller difference between $\mathrm{O}_{\mathrm{s}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{s}}$ and $\mathrm{O}_{\mathrm{p}}-$ $\mathrm{Sn}-\mathrm{O}_{\mathrm{p}}\left(\mathrm{O}_{\mathrm{s}} / \mathrm{O}_{\mathrm{p}}=\right.$ oxygen atom associated to secondary/primary bond);

Fig. 5. Substituent effect on the ${ }^{119} \mathrm{Sn}$ chemical shift of $(\mathrm{Q})_{2} \mathrm{Me}_{\mathrm{n}} \mathrm{SnCl}_{2-n}\left(\mathrm{Q}=\mathrm{Q}_{\mathrm{D}}\right.$ and Q_{M}, average value for $n=0$ and $\left.n=1\right)$.
3. an increasing bite angle $\mathrm{O} 1-\mathrm{Sn}-\mathrm{O} 2$ (and $\mathrm{O} 51-\mathrm{Sn}-$ O52 in the other ligand);
4. less deformation of the octahedron.

The bite angle is considered a principal reason for the octahedral deformation by Kepert [7] who calculated the repulsion among the atoms forming the coordination sphere and defined the distorted system as STB. From results of energy calculations on STB complexes containing symmetric ligands, Kepert concluded that the smaller the bite angle, the stronger the distortion. Table 8 shows that the same conclusion holds for asymmetric ligands.

The structural behavior of these complexes can be explained on the basis of the chemical modifications: 1. the organic groups attached to the metal;
2. the ligand substituent on C 8 ;
3. the ligand substituent on N1.

In the first case, as shown ([6]c) previously, the phenyl groups attached to the tin atom stabilize the largest $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle $\left(173.0^{\circ}\right)$. The electronic nature (withdrawing effect) of this group is considered responsible for this value ([6]c). On the contrary, alkyl groups attached to the metal (better electron donors than phenyl groups) show much smaller $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles (about $150-162^{\circ}$). It is observed that the distortion induced by the cyclohexyl group, which is a tertiary alkyl group, in the title compound is of the same order as that found for alkyl groups. Moreover, a comparison of the effect of a primary methyl group in $\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}(\mathrm{Me})_{2}$ $\left(\mathrm{C}-\mathrm{Sn}-\mathrm{C}=153.3(3)^{\circ}\right)([6] \mathrm{a})$, that of a secondary $n-$ butyl group in $\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}^{\left(\mathrm{Bu}^{n}\right)_{2} \quad\left(\mathrm{C}-\mathrm{Sn}-\mathrm{C}=154.7(8)^{\circ}\right)}$ ([22]a) and that of a quaternary t-butyl group in $\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{Sn}^{\left(\mathrm{Bu}^{\prime}\right)_{2} \quad\left(\mathrm{C}-\mathrm{Sn}-\mathrm{C}=150.0(5)^{\circ}\right) \text { [1] shows even }}$ more similarity in the octahedral distortion with the title compound which has a $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ of $154.6(5)^{\circ}$.

Therefore, the structural behavior of the title compound appears to corroborate previous results. This comparison does not take into account the differences among ligands (Q^{\prime} and Q_{D}) and such an assumption appears reasonable as shown below.

With respect to the second modification, substitution on C8, it is apparent that this change implies less structural variation on the whole complex than that obtained by substitution on the metal. However, there are not yet sufficient complexes studied to elucidate the rules governing such structural variations. The same applies for substitution on N1. We will further investigate this point.

3. Experimental section

3.1. General comments

The $\operatorname{tin}(I V)$ and organotin(IV) halides were purchased from Alfa (Karlsruhe) and Aldrich (Milwaukee) and used as received, except for dibenzyltin dichloride which was synthesized according to a reported procedure [24].

The samples for microanalysis were dried in vacuo to constant weight $\left(20^{\circ} \mathrm{C}\right.$, ca. 0.1 Torr). Elemental analyses (C, H, N) were performed in house with Fisons Instruments 1108 CHNS-O Elemental analyzer. Molecular weight determinations were performed with a Knauer membrane osmometer. IR spectra were recorded from $4000-100 \mathrm{~cm}^{-1}$ with a Perkin-Elmer System 2000 FT-IR instrument. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{19} \mathrm{Sn}$ NMR spectra were recorded on a VXR-300 Varian spectrometer operating at r.t. (300 MHz for ${ }^{1} \mathrm{H}, 75$ MHz for ${ }^{13} \mathrm{C}, 282.2 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}$ and 111.9 MHz for

Fig. 6. The effect of increasing substitution of R on the ${ }^{119} \mathrm{Sn}$ chemical shift of $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnR}_{2}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Cy}, \mathrm{Bu}^{\dagger}\right)$.
${ }^{119} \mathrm{Sn}$). Melting points were taken on an IA 8100 Electrothermal instrument. The electrical conductance of the dichloromethane solutions was measured with a Crison CDTM 522 conductimeter at r.t.

3.2. Synthesis of the donors

The precursor 1,3-dimethyl-5-pyrazolone was synthesized by a reported procedure [25].

3.2.1. Synthesis of $Q_{M} H$

1,3-Dimethyl-5-pyrazolone $(6.0 \mathrm{~g}, 53.5 \mathrm{mmol})$ was placed in a flask equipped with a stirrer, separating funnel and a reflux condenser and dissolved in dry dioxane (60 ml) by warming. Calcium hydroxide (10.0 $\mathrm{g}, 135 \mathrm{mmol}$) and then benzoyl chloride ($6.5 \mathrm{ml}, 7.9 \mathrm{~g}$, 56.0 mmol) were added, the latter dropwise for 10 min . The mixture was heated to reflux overnight and then poured into $\mathrm{HCl} 2 \mathrm{~N}(200 \mathrm{ml})$ to decompose the calcium complex. The resulting clear solution was heated to reduce the volume to one half, then ice was added and a precipitate formed. It was filtered and recrystallized from methanol-water and dried to constant weight ($8.2 \mathrm{~g}, 38.2 \mathrm{mmol}, 71 \%$ yield).

3.2.2. Synthesis of $Q_{D} H$

1,3-Dimethyl-5-pyrazolone $(6.0 \mathrm{~g}, 53.5 \mathrm{mmol})$ was placed in a flask equipped with a stirrer, separating funnel and a reflux condenser and dissolved in dry dioxane (60 ml) by warming. Calcium hydroxide (10.0 $\mathrm{g}, 135 \mathrm{mmol}$) and then acetyl chloride ($3.8 \mathrm{ml}, 4.2 \mathrm{~g}$, 54.0 mmol) were added, the latter dropwise for 10 min . The mixture was heated to reflux overnight and then
poured into $\mathrm{HCl} 2 \mathrm{~N}(200 \mathrm{ml})$ to decompose the calcium complex. The resulting clear solution was heated to reduce the volume to one half, then dichloromethane $(100 \mathrm{ml})$ was added and two phases formed. The organic phase, separated from the aqueous phase, was evaporated under reduced pressure to give a light brown solid, which was recrystallized from diethyl ether and dried to constant weight ($4.6 \mathrm{~g}, 29.4 \mathrm{mmol}$, 55% yield).

3.3. Synthesis of the complexes

3.3.1. Diethyltin(IV)bis(1,3-dimethyl-4-benzoylpyrazo-

 lon-5-ato) $\left(Q_{M}\right)_{2} \mathrm{SnEt}_{2}$ (1)Diethyltin dichloride ($0.248 \mathrm{~g}, 1 \mathrm{mmol}$) was added to a methanolic solution (30 ml) of the ligand $\mathrm{Q}_{\mathrm{M}} \mathrm{H}(0.432$ $\mathrm{g}, 2 \mathrm{mmol})$ and $\mathrm{KOH}(0.112 \mathrm{~g}, 2 \mathrm{mmol})$. The clear solution was stirred overnight at r.t., then water was added (15 ml). Immediately a precipitate formed, which was filtered, recrystallized from a mixture of chloroform and light petroleum and dried to constant weight. The complexes $\quad\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMe}_{2}, \quad\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnEt}_{2} \quad$ and $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnMeCl}$ were synthesized by the same procedure.

3.3.2. Di-n-butyltin(IV)bis(1,3-dimethyl-4-benzoylpyra-

 zolon-5-ato) $\left(Q_{M}\right)_{2} S n B u_{2}^{n}$ (2)A benzene solution (20 ml) of di- n-butyltin oxide $(0.248 \mathrm{~g}, 1 \mathrm{mmol})$ was added to a benzene solution (20 $\mathrm{ml})$ of the ligand $\mathrm{Q}_{\mathrm{M}} \mathrm{H}(0.432 \mathrm{~g}, 2 \mathrm{mmol})$, and the reaction mixture was refluxed for about 6 h . After removing the solvent under reduced pressure on a rotary evaporator, a thick oil was obtained. This was dissolved in diethyl ether (40 ml) and the solution left

Fig. 7. Halogen effect on ${ }^{119} \mathrm{Sn}$ chemical shift of $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnX}_{2}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I$)$.
to evaporate until a yellow precipitate formed. This was filtered, recrystallized from methanol/diethyl ether and dried to constant weight. The complex $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{n}$ was obtained using the same procedure.

3.3.3. Di-t-butyltin(IV)bis(1,3-dimethyl-4-benzoylpyra-zolon-5-ato) $\left(Q_{M}\right)_{2} S n B u_{2}^{t}$ (3)

Di- t-butyltin dichloride ($0.304 \mathrm{~g}, 1 \mathrm{mmol}$) was added to a methanolic solution (30 ml) of the ligand $\mathrm{Q}_{\mathrm{M}} \mathrm{H}$ ($0.432 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{KOH}(0.112 \mathrm{~g}, 2 \mathrm{mmol})$. The clear solution was stirred overnight at room temperature, then evaporated to dryness under reduced pressure on a rotary evaporator. The residue was treated with chloroform (20 ml) and to the filtered solution diethyl ether was added (40 ml): a yellow precipitate formed, which was filtered, recrystallized from diethyl ether and dried to constant weight. The complex $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBu}_{2}^{t}$ was obtained using the same procedure but light petroleum was used instead of diethyl ether.

3.3.4. Dicyclohexyltin(IV)bis(1,3-dimethyl-4-benzoylpyr azolon-5-ato) $\left(Q_{M}\right)_{2} S n C y_{2}$ (4)

Dicyclohexyltin dibromide $(0.445 \mathrm{~g}, 1 \mathrm{mmol})$ was added to a methanolic solution (30 ml) of the ligand $\mathrm{Q}_{\mathrm{M}} \mathrm{H}(0.432 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{KOH}(0.112 \mathrm{~g}, 2 \mathrm{mmol})$. The clear solution was stirred overnight at r.t., then evaporated to dryness under reduced pressure on a rotary evaporator. The residue was treated with chloroform (20 ml) and to the filtered solution diethyl ether was added $(40 \mathrm{ml})$. From the solution, left to evaporate overnight at r.t., a light brown precipitate formed, which was filtered, recrystallized from a mixture of methanol/
diethyl ether and dried to constant weight. The complexes $\quad\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}, \quad\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2}, \quad\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBr}_{2} \quad$ and $\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnBr}_{2}$ were synthesized using the same procedure.

3.3.5. Dibenzyltin(IV)bis(1,3-dimethyl-4-benzoylpyrazo-lon-5-ato) $\left(Q_{M}\right)_{2} \mathrm{SnBz} z_{2}$ (5)

Dibenzyltin dichloride ($0.372 \mathrm{~g}, 1 \mathrm{mmol}$) was added to a methanolic solution $(30 \mathrm{ml})$ of the ligand $\mathrm{Q}_{\mathrm{M}} \mathrm{H}(0.432$ $\mathrm{g}, 2 \mathrm{mmol})$ and $\mathrm{KOH}(0.112 \mathrm{~g}, 2 \mathrm{mmol})$. The clear solution was stirred overnight at r.t., then evaporated to dryness under reduced pressure on a rotary evaporator. The residue was treated with dichloromethane (20 ml) and methanol was added $(40 \mathrm{ml})$ to the filtered solution. A precipitate formed, which was filtered, recrystallized from ethyl acetate and dried to constant weight. The complexes $\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnPh}_{2},\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnBz}_{2}$ and $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnPh}_{2}$ were synthesized using the same procedure.

3.3.6. Difluorotin(IV)bis(1,3-dimethyl-4-acetylpyrazo-

 lon-5-ato) $\left(Q_{D}\right)_{2} \mathrm{SnF}_{2}$ (16)Tin tetrafluoride $(0.195 \mathrm{~g}, 1 \mathrm{mmol})$ was added to a dichloromethane solution (40 ml) of the ligand $\mathrm{Q}_{\mathrm{D}} \mathrm{H}$ ($0.312 \mathrm{~g}, 2 \mathrm{mmol})$. The resulting suspension was left to reflux with stirring for 2 days, then unreacted SnF_{4} was removed by filtration of the hot solution and the filtrate was evaporated to dryness under reduced pressure on a rotary evaporator. The residue was extracted using hot diethyl ether (30 ml) from which a yellow precipitate slowly formed on cooling. The complexes $\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnF}_{2},\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnF}_{2}$ and $\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnF}_{2}$ were obtained in a similar way by using choloroform instead of dicholoromethane.
3.3.7. Diiodotin(iv)bis(1,3-dimethyl-4-acetyllpyrazolon-5-ato) $\left(Q_{D}\right)_{2} \operatorname{SnI}_{2}$ (16)

To a THF solution (40 ml) of the derivative $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCl}_{2},(0.607 \mathrm{~g}, 1 \mathrm{mmol})$ was added an excess of $\mathrm{NaI}(0.600 \mathrm{~g}, 4 \mathrm{mmol})$ and the resulting suspension was left to reflux with stirring for 3 days. Then it was filtered to separate the excess NaI and the NaCl formed by the Cl / I exchange, and the filtrate was evaporated to dryness under reduced pressure on a rotary evaporator. The residue was recrystallized with methanol/diethyl ether. The complexes $\left(\mathrm{Q}_{\mathrm{M}}\right)_{2} \mathrm{SnI}_{2}, \quad\left(\mathrm{Q}^{\prime}\right)_{2} \mathrm{SnI}_{2}$ and $\left(\mathrm{Q}^{\prime \prime}\right)_{2} \mathrm{SnI}_{2}$ were synthesized in the same way.

3.4. X-ray diffraction

A preliminary study was performed using a Weissenberg Camera to determine cell parameters and space group. A P2 1_{1} Syntex diffractometer was used for the measurements of the cell constants and for the data collection. A summary of crystal data together with

Table 6
Atomic coordinates and isotropic displacement parameters

Sn	0.12540(2)	0.27023(4)	0.3089(1)	2.79(2)
O1	0.1350(3)	$0.1674(5)$	0.408(1)	3.7(2)
O2	0.0699(3)	$0.2045(5)$	0.183(1)	4.0(2)
O51	0.1780(2)	0.2880(4)	0.4552(9)	3.3(2)
O52	0.1364(3)	$0.3972(5)$	0.257(1)	3.8(2)
N1	0.1319(3)	0.0434(6)	0.437(1)	4.0(3)
N2	$0.1115(4)$	-0.0182(6)	0.381(1)	4.7(4)
N51	0.2248(3)	0.3518(7)	0.599(1)	4.4(3)
N52	$0.2389(4)$	0.4237(8)	0.626(1)	5.0(4)
C3	$0.0839(4)$	$0.0074(7)$	0.278(2)	3.8(4)
C4	$0.0862(4)$	0.0853(6)	$0.265(1)$	2.8(3)
C5	0.1177(4)	0.1062(6)	0.371(1)	3.1(3)
C6	0.1650(5)	$0.0366(9)$	0.551(2)	5.0(5)
C7	$0.0578(5)$	-0.0483(8)	0.192(2)	4.9(4)
C8	0.0638(4)	0.1358(7)	0.177(1)	3.3(3)
C9	$0.0287(4)$	0.114(1)	0.067(2)	5.8(5)
C10	0.1513(4)	$0.2555(6)$	$0.110(1)$	2.9(3)
C11	0.1608(4)	0.1752(6)	0.081(1)	3.1(3)
C12	0.1808(4)	0.1693(7)	-0.056(1)	3.9(4)
C13	0.1556(5)	$0.2046(9)$	-0.186(2)	4.9(4)
C14	$0.1466(4)$	0.2844(7)	$-0.156(1)$	4.1(4)
C15	$0.1265(5)$	$0.2914(7)$	-0.020(1)	4.3(4)
C16	0.0844(4)	0.3155(8)	0.439(2)	3.8(4)
C17	0.0535(4)	$0.3654(9)$	0.352(2)	5.2(5)
C18	0.0281(5)	0.400(1)	0.461(2)	6.9(6)
C19	0.0084(6)	0.342(1)	0.543(2)	7.4(7)
C20	0.0391(6)	0.291(1)	$0.627(2)$	7.2(7)
C21	0.0656(5)	0.258(1)	0.523(2)	5.8(5)
C53	0.2161(5)	0.4648 (8)	0.536(2)	5.0(5)
C54	0.1863(4)	0.4257(8)	0.447(2)	4.5(4)
C55	0.1942(4)	0.3510(8)	0.493(1)	3.8(4)
C56	$0.2445(4)$	0.2905 (8)	0.679 (2)	4.9(4)
C57	0.2251(6)	0.547(1)	0.542(2)	7.6(7)
C58	0.1568 (4)	0.4444 (7)	0.330 (2)	4.0(4)
C59	0.1494(6)	0.5237(8)	0.295(2)	6.2(6)

Table 7
Selected bond distances and angles

Distances	
Sn1-O1	$2.094(9)$
Sn1-O2	$2.42(1)$
Sn1-O51	$2.132(9)$
Sn1-O52	$2.405(8)$
Sn1-C10	$2.17(1)$
Sn1-C16	$2.14(1)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.29(1)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.27(2)$
$\mathrm{O} 51-\mathrm{C} 55$	$1.30(2)$
$\mathrm{O} 52-\mathrm{C} 58$	$1.25(2)$
Angles	
$\mathrm{C}(16)-\mathrm{Sn}(1)-\mathrm{C}(10)$	$154.6(5)$
$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{O}(1)$	$80.4(3)$
$\mathrm{O}(52)-\mathrm{Sn}(1)-\mathrm{O}(51)$	$80.5(3)$
$\mathrm{O}(51)-\mathrm{Sn}(1)-\mathrm{O}(1)$	$77.8(3)$
$\mathrm{O}(52)-\mathrm{Sn}(1)-\mathrm{O}(2)$	$121.2(3)$
$\mathrm{O}(51)-\mathrm{Sn}(1)-\mathrm{O}(2)$	$158.2(3)$
$\mathrm{O}(52)-\mathrm{Sn}(1)-\mathrm{O}(1)$	$158.3(4)$
$\mathrm{C}(10)-\mathrm{Sn}(1)-\mathrm{O}(1)$	$101.6(4)$
$\mathrm{C}(10)-\mathrm{Sn}(1)-\mathrm{O}(2)$	$85.3(4)$
$\mathrm{C}(10)-\mathrm{Sn}(1)-\mathrm{O}(51)$	$98.4(4)$
$\mathrm{C}(10)-\mathrm{Sn}(1)-\mathrm{O}(52)$	$81.8(4)$
$\mathrm{C}(16)-\mathrm{Sn}(1)-\mathrm{O}(1)$	$100.2(4)$
$\mathrm{C}(16)-\mathrm{Sn}(1)-\mathrm{O}(2)$	$85.6(4)$
$\mathrm{C}(16)-\mathrm{Sn}(1)-\mathrm{O}(51)$	$98.8(4)$
$\mathrm{C}(16)-\mathrm{Sn}(1)-\mathrm{O}(52)$	$82.7(4)$

details of data collection and computer resolution is given in Table 9. Monitoring of the standard reflections $[0,4,0],[0,-4,0]$ and $[1,1,-1]$, taken every 100 reflections, indicated no decay. A ψ-scan showed no absorption anisotropy. Data were corrected for Lorentz and polarization effects. The molecular structure was solved using the heavy atom method with CAOS [26]. Subsequent calculations were performed as follows: refinement based on the minimization of the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with the weighting scheme $w=1 /(a+$ $F_{\mathrm{o}}+c F_{\mathrm{o}}^{2}$, where a and c are of the order of $2 F_{\mathrm{o}}(\mathrm{min})$ and $2 / F_{\mathrm{o}}$ (max) [27], respectively; H atoms were introduced at fixed positions according to $\mathrm{C}-\mathrm{H}$ distance $=$ $0.96 \AA$. Anisotropic displacement parameters were allowed for non- H atoms and H isotropic displacement parameters were kept fixed during refinement. The final refinement showed no residual peaks. Atomic scattering factors and anomalous dispersion terms were taken from the literature [28].

4. Supplementary material

Hydrogen coordinates, full list of bond distances and angles and anisotropic displacement parameters. $F_{\mathrm{o}} / F_{\mathrm{c}}$ listing is available from F . Caruso (e-mail: caruso@isc.mlib.cnr.it).

Fig. 8. ORTEP view of the compound $\left(\mathrm{Q}_{\mathrm{D}}\right)_{2} \mathrm{SnCy}_{2}$.

Table 8
Selected geometrical data in the coordination sphere for diorganotinbis(β-diketonate) compounds

Compound ${ }^{\text {a }}$	$\mathrm{Sn}-\mathrm{O}_{\mathrm{p}}^{\mathrm{b}}$ (a)	$\mathrm{Sn}-\mathrm{O}_{\mathrm{s}}^{\mathrm{c}}$ (b)	(b)-(a)	$\mathrm{Sn}-\mathrm{C}$	$\mathrm{O}_{\mathrm{p}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{p}}$	$\mathrm{O}_{\mathrm{s}}-\mathrm{Sn}-\mathrm{O}_{\text {s }}$	$\begin{aligned} & \mathrm{O}_{\mathrm{p}}-\mathrm{Sn}-\mathrm{O}_{\mathrm{s}} \\ & \text { (bite) } \end{aligned}$	$\mathrm{C}-\mathrm{Sn}-\mathrm{C}$	Geometry	Ref.
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}$	2.18(1)			2.14(2)	94(1)		86(1)	180	Octahedral	([5]a)
	2.20(2)									
$\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	2.143(7)	2.223(8)	0.08	2.11(1)	91.9(3)	98.6(3)	84.5(4)	173.0(7)	STB	([6]c)
	2.12(1)	2.26(1)	0.14	2.11(2)			85.1(3)			
$\mathrm{Bz}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\mathrm{OMe}}\right)_{2}$	$2.105(6)$	2.359(7)	0.254	2.12(1)	84.1(3)	107.4(2)	83.5(2)	164.5(4)	STB	([6]e)
	2.109(7)	2.329(7)	0.220	2.15 (1)			85.0(3)			
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime \prime}\right)_{2}$	2.123(4)	2.288(4)	0.165	2.101(8)	82.7(1)	111.5(2)	82.9(2)	162.1(3)	STB	([22]b)
	$2.105(5)$	2.321(4)	0.216	$2.118(7)$			83.2(1)			
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}_{2}^{\mathrm{O}-\mathrm{i}-\mathrm{Pr}}\right)$	2.10(1)	2.39(1)	0.29	2.07(2)	82.0(4)	112.7(4)	81.8(4)	157.0(8)	STB	([6]d)
	2.09(1)	2.39(1)	0.30	2.09(2)			83.7(4)			
$\mathrm{Bu}_{2}^{n} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	2.12(2)	2.35 (2)	0.23	2.07(2)	79.2(5)	118.7(4)	82.0(4)	154.7(8)	STB	([22]a)
	2.11(2)	2.38(2)	0.27	2.12(2)			80.3(4)			
$\mathrm{Cy}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{D}}\right)_{2}$	2.094(9)	2.42(1)	0.326	2.17(1)	77.8(3)	121.2(3)	80.4(3)	154.6(5)	STB	This work
	2.132(9)	2.405(8)	0.273	2.14(1)			80.5(3)			
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}_{\mathrm{Br}}\right)_{2}$	2.104(4)	$2.385(5)$	0.281	2.097(8)	75.5(2)	126.7(2)	78.5(2)	154.5(3)	STB	([6]b)
	2.099(4)	$2.436(5)$	0.337	2.099(8)			79.5(2)			
$\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	2.104(3)	$2.337(4)$	0.233	2.095(8)	77.2(1)	121.6(1)	80.9(1)	153.3(3)	STB	([6]a)
	2.103(4)	2.412(4)	0.309	2.090(8)			80.7(1)			
$\mathrm{Bu}_{2}^{t} \mathrm{Sn}\left(\mathrm{Q}^{\prime}\right)_{2}$	2.145 (5)	2.381(7)	0.236	2.20(1)	74.1(2)	127.4(2)	79.3(2)	150.0(5)	STB	[1]
	$2.135(6)$	2.461(6)	0.326	2.20(2)			79.8(2)			

[^3]Table 9
Summary of crystal data

Formula	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Sn}$
Formula weight	567.30
$a(\AA)$	$34.398(10)$
$b(\AA)$	$18.242(7)$
$c(\AA)$	$9.248(3)$
$\beta\left({ }^{\circ}\right)$	$97.81(3)$
Volume $\left(\mathrm{A}^{3}\right)$	$5749(3)$
Space group	$C 2 / c$
Z	8
Crystal dimensions	$0.35 \times 0.20 \times 0.20$
$\quad(\mathrm{~mm})$	
Density calc. $\left(\mathrm{g}\right.$ cm ${ }^{-}$	1.311
$\quad 3)$	
Temperature	298 K
$F(000)$	2352
μ (cm ${ }^{-1}$)	9.296
Radiation	$\mathrm{Mo}-\mathrm{K} \alpha$
Data collection mode	ω
Scan speed $\left({ }^{\circ}\right.$ min $\left.{ }^{-1}\right)$	2
Scan range $\left({ }^{\circ}\right)$	0.6
Background counts	$1 / 4$ of scan time at the end of scan range
2θ range $\left({ }^{\circ}\right)$	$3-56$
Reflections refined	2886
Final no. variables	316
R f R_{w}	$0.059,0.080$

Acknowledgements

Financial support by Università degli Studi di Camerino, Consiglio Nazionale delle Ricerche C.N.R.Rome, Research Committee and URSI program at Vassar College.

References

[1] C. Pettinari, G. Rafaiani, G. Gioia Lobbia, A. Lorenzotti, F. Bonati, B. Bovio, J. Organomet. Chem. 405 (1991) 75.
[2] S. Miyazaki, H. Mukai, S. Umetani, S. Kihara, M. Matsui, Inorg. Chem. 28 (1989) 3014.
[3] K. Venkataraman, in: The Chemistry of Synthetic Dyes, vol. 1, Academic Press, New York, 1952.
[4] M.F. Mahon, K.C. Molloy, B.A. Omotowa, M.A. Mesubi, J. Organomet. Chem. 525 (1996) 239.
[5] (a) G.A. Miller, E.O. Schlemper, Inorg. Chem. 12 (1977) 677. (b) G. Poli, C.J. Cheer, W.H. Nelson, J. Organomet. Chem. 306 (1986) 347.
[6] (a) B. Bovio, A. Cingolani, F. Marchetti, C. Pettinari, J. Organomet. Chem. 458 (1993) 39. (b) C. Pettinari, F. Marchetti, D. Leonesi, M. Rossi, F. Caruso, J. Organomet. Chem. 483 (1994) 123. (c) F. Caruso, D. Leonesi, F. Marchetti, E. Rivarola, M. Rossi, V. Tomov, C. Pettinari, J. Organomet. Chem. 519 (1996) 9. (d) C. Pettinari, F. Marchetti, A. Gregori, A. Cin-
golani, J. Tanski, M. Rossi, F. Caruso, Inorg. Chim. Acta 257 (1997) 37. (e) C. Pettinari, F. Marchetti, A. Cingolani, A. Lorenzotti, E. Mundorff, M. Rossi, F. Caruso, Inorg. Chim. Acta 262 (1997) 33.
[7] D.L. Kepert, Prog. Inorg. Chem. 23 (1977) 1.
[8] E.C. Okafor, B.A. Uzoukwu, Synth. React. Inorg. Met. Org. Chem. 23 and references reported therein.
[9] B.S. Jensen, Acta Chem. Scand. 13 (1959) 1347, 1668, 1890.
[10] D. Searle, P.J. Smith, N.A. Bell, L.A. March, I.W. Nowell, J.D. Donaldson, Inorg. Chim. Acta 162 (1989) 143.
[11] (a) A.J. Crowe, P.J. Smith, Chem. Ind. (1980) 200. (b) A.J. Crowe, P.J. Smith, G. Atassi, Chem. Biol. Interact. 32 (1980) 171. (c) M. Gielen (Ed.), Tin-based Antitumor Drugs, NATO ASI Ser. H. Cell Biology, vol. 37, Brussels, 1989.
[12] C. Pettinari, F. Marchetti, A. Cingolani, C. Marciante, R. Spagna, M. Colapietro, Polyhedron 13 (1994) 939.
[13] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley Interscience, New York, 1986, chap. III, pp. 259-267.
[14] (a) M. McGrady, R.S. Tobias, Inorg. Chem. 3 (1964) 1157. (b) R.W. Jonas, R.C. Fay, Inorg. Chem. 12 (1973) 2599. (c) I. Wharf, D.F. Shiver, Inorg. Chem. 8 (1969) 914. (d) J.R. May, W.R. McWhinnie, R.C. Poller, Spectrochim. Acta 27A (1971) 969. (e) A.L. Smith, Spectrochim. Acta 24A (1967) 695. (f) M.S. Dance, W.R. McWhinnie, R.C. Poller, J. Chem. Soc. Dalton Trans. (1976) 2349. (g) G.K. Sandhu, N.S. Boparoy, J. Organomet. Chem. 411 (1991) 89. (h) F. Huber, M. Vornfield, G. Ruisi, R. Barbieri, Appl. Organomet. Chem. 7 (1993) 243.
[15] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 16 (1985) 73.
[16] J. Holecec, A. Lycka, Inorg. Chim. Acta 118 (1986) L15.
[17] T.P. Lockhart, W.F. Manders, Inorg. Chem. 25 (1986) 892.
[18] (a) J.A.S. Smith, E.J. Wilkins, J. Chem. Soc. A (1966) 1749. (b) R. Ueeda, Y. Kawasaki, T. Tanaka, R. Okawara, J. Organomet. Chem. 5 (1966) 194. (c) V. Doron, C. Fischer, Inorg. Chem. 6 (1967) 1917. (d) J.W. Faller, A. Davison, Inorg. Chem. 6 (1967) 182. (e) G.E. Glass, R.S. Tobias, J. Organomet. Chem. 15 (1968) 481.
[19] R.O. Day, R.R. Holmes, A. Schmidpeter, K. Stoll, L. Howe, Chem. Ber. 124 (1991) 2443.
[20] A.G. Davies, P.G. Harrison, J.D. Kennedy, T.N. Mitchell, R.J. Puddephatt, W. Ramsay, W. McFarlane, J. Chem. Soc. C (1969) 1136.
[21] W.H. Nelson, Inorg. Chem. 6 (1967) 1509.
[22] (a) S. Saxena, R. Bohra and A.K. Ray, Inorg. Chim. Acta 173 (1990) 191. (b) A. Jain, S. Saxena, R. Bohra, A.K. Ray, Main Group Met. Chem. 18 (1995) 139.
[23] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell Univ. Press, Ithaca, New York, 1960, pp. 260.
[24] K. Sisido, Y. Takedo, Z. Kinugawa, J. Am. Chem. Soc. 83 (1961) 538.
[25] A.I. Vogel, Vogel's Textbook of Practical Organic Chemistry, Longman, Harlow, 1989, chap. 8, p. 1150.
[26] M. Camalli, D. Capitani, G. Cascarano, S. Cerrini, G. Giacovazzo, R. Spagna, Caos Program: User guide, 1st Strut. Chim. CNR Monterotondo Stazione, Rome, Italy, 1986.
[27] D.J. Cruickshank, in: J.S. Rollet (Ed.), Computing Methods in Crystallography, Pergamon, Oxford, 1965, pp. 114.
[28] International Tables for X-ray Crystallography, Kynoch, Birmingham, UK, 1974.

[^0]: * Corresponding author.
 ${ }^{1}$ Part II is ref. ([6]e)

[^1]: ${ }^{\text {a }}$ Values calculated in parentheses.
 ${ }^{\mathrm{b}}$ Molecular weight determined osmometrically in chloroform solution at $40^{\circ} \mathrm{C}$.
 ${ }^{\text {c }}$ Concentrations are in mol per 1000 g of solvent.
 ${ }^{\mathrm{d}} r=$ M.W./F.W.

[^2]: ${ }^{\text {a }}$ In ppm from external standard $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{4}$ and CFCl_{3}, respectively.
 ${ }^{\mathrm{b}}$ Probably due to low solubility of compound in CDCl_{3}.

[^3]: ${ }^{\text {a }}$ acac $=$ pentane-2,4-dionato; $\mathrm{Q}^{\prime}=1$-phenyl-3-methyl-4-benzoylpyrazolon-5-ato; $\mathrm{Q}^{\prime \prime}=1$-phenyl-3-methyl-4-acetylpyrazolon-5-ato; $\mathrm{Q}_{\mathrm{Br}}=1-\mathrm{phenyl}-$ 3-methyl-4-p-bromobenzoylpyrazolon-5-ato; $\quad \mathrm{Q}^{\mathrm{O}-\mathrm{i}-\mathrm{Pr}}=1$-phenyl-3-methyl-4-isopropoxycarbonylpyrazolon-5-ato; $\quad \mathrm{Q}^{\mathrm{OMe}}=$ 1-phenyl-3-methyl-4methoxycarbonyl pyrazolon-5-ato; $\mathrm{Q}_{\mathrm{D}}=1,3$-dimethyl-4-acetylpyrazolon-5-ato.
 ${ }^{\mathrm{b}} \mathrm{O}_{\mathrm{p}}$, primary bond.
 ${ }^{\mathrm{c}} \mathrm{O}_{\mathrm{s}}$, secondary bond.

